×

Control strategies in multigroup models: the case of the star network topology. (English) Zbl 1401.92202

Summary: In this paper, we propose control strategies for multigroup epidemic models. We use compartmental SIRS models to study the dynamics of \(n\) host groups sharing the same source of infection in addition to the transmission among members of the same group. In particular, we consider a model for infectious diseases with free-living pathogens in the environment and a metapopulation model with a central patch. We give the detailed derivation of the target reproduction number under three public health interventions and provide the corresponding biological insights. Moreover, using the next-generation approach, we calculate the basic reproduction numbers associated with subsystems of our models and determine algebraic connections to the target reproduction number of the complete model. The analysis presented here illustrates that understanding the topological structure of the infection process and partitioning it into simple cycles is useful to design and evaluate the control strategies.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
05C90 Applications of graph theory
Full Text: DOI

References:

[1] Adler, B.; Peña Moctezuma, A., Leptospira and leptospirosis, Vet Microbiol, 140, 287-296, (2010) · doi:10.1016/j.vetmic.2009.03.012
[2] Arino, J.; Portet, S., Epidemiological implications of mobility between a large urban centre and smaller satellite cities, J Math Biol, 71, 1243-1265, (2015) · Zbl 1355.92104 · doi:10.1007/s00285-014-0854-z
[3] Arino, J.; Driessche, P., A multi-city epidemic model, Math Popul Stud, 10, 175-193, (2003) · Zbl 1028.92021 · doi:10.1080/08898480306720
[4] Baca-Carrasco, D.; Olmos, D.; Barradas, I., A mathematical model for human and animal leptospirosis, J Biol Syst, 23, s55-s65, (2015) · Zbl 1343.92459 · doi:10.1142/S0218339015400057
[5] Baca-Carrasco, D.; Velasco-Hernández, JX, Sex, mosquitoes and epidemics: an evaluation of zika disease dynamics, Bull Math Biol, 78, 2228-2242, (2016) · Zbl 1357.92067 · doi:10.1007/s11538-016-0219-4
[6] Bani-Yaghoub, M.; Gautam, R.; Shuai, Z.; Driessche, P.; Ivanek, R., Reproduction numbers for infections with free-living pathogens growing in the environment, J Biol Dyn, 6, 923-940, (2012) · Zbl 1447.92395 · doi:10.1080/17513758.2012.693206
[7] Berman A, Shaked-Monderer N (2012) Non-negative matrices and digraphs. In Meyers, R. A. (ed.), Computational complexity: Theory, techniques, and applications. Springer, pp 2082-2095
[8] Chen, MI; Ghani, AC; Edmunds, WJ, A metapopulation modelling framework for gonorrhoea and other sexually transmitted infections in heterosexual populations, J R Soc Interface, 6, 775-791, (2009) · doi:10.1098/rsif.2008.0394
[9] Edwards, R.; Kim, S.; Driessche, P., A multigroup model for a heterosexually transmitted disease, Math Biosci, 224, 87-94, (2010) · Zbl 1188.92032 · doi:10.1016/j.mbs.2009.12.008
[10] Evangelista, KV; Coburn, J., Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses, Future Microbiol, 5, 1413-1425, (2010) · doi:10.2217/fmb.10.102
[11] Ganoza, CA; Matthias, MA; Collins-Richards, D.; Brouwer, KC; Cunningham, CB; Segura, ER; Gilman, RH; Gotuzzo, E.; Vinetz, JM, Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic leptospira, PLoS Med, 3, e308, (2006) · doi:10.1371/journal.pmed.0030308
[12] Garira, W.; Mathebula, D.; Netshikweta, R., A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment, Math Biosci, 256, 58-78, (2014) · Zbl 1330.92124 · doi:10.1016/j.mbs.2014.08.004
[13] Heesterbeek, JAP, A brief history of r0 and a recipe for its calculation, Acta Biotheor, 50, 189-204, (2002) · doi:10.1023/A:1016599411804
[14] Holt, J.; Davis, S.; Leirs, H., A model of leptospirosis infection in an african rodent to determine risk to humans: seasonal fluctuations and the impact of rodent control, Acta Tropica, 99, 218-225, (2006) · doi:10.1016/j.actatropica.2006.08.003
[15] Horn RA, Johnson CR (2013) Matrix analysis, 2nd. Cambridge University, New York · Zbl 1267.15001
[16] Keeling, M.; Tildesley, M.; House, T.; Danon, L., The mathematics of vaccination, Math Today, 49, 40-43, (2013)
[17] Knipl, D., A new approach for designing disease intervention strategies in metapopulation models, J Biol Dyn, 10, 71-94, (2016) · Zbl 1448.92311 · doi:10.1080/17513758.2015.1107140
[18] Ko, AI; Reis, MG; Dourado, CMR; Johnson, WD; Riley, LW; Group, SLS, Urban epidemic of severe leptospirosis in Brazil, Lancet, 354, 820-825, (1999) · doi:10.1016/S0140-6736(99)80012-9
[19] Salle, J.; Lefschetz, S.; Alverson, R., Stability by Liapunov’s direct method with applications, Phys Today, 15, 59, (1962) · doi:10.1063/1.3057800
[20] Leirs, H.; Stenseth, NC; Nichols, JD; Hines, JE; Verhagen, R.; Verheyen, W., Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent, Nature, 389, 176, (1997) · doi:10.1038/38271
[21] Martcheva M (2015) Introduction to mathematical epidemiology, vol 61. Springer, Berlin · Zbl 1333.92006 · doi:10.1007/978-1-4899-7612-3
[22] Olmos, D.; Barradas, I.; Baca-Carrasco, D., On the calculation of \(R_0\) using submodels, Differ Equ Dyn Syst, 25, 481-497, (2017) · Zbl 1378.92075 · doi:10.1007/s12591-015-0257-7
[23] Prüss-Üstün A, Corvalán C (2006) Preventing disease through healthy environments. World Health Organization, Geneva
[24] Roberts, M.; Heesterbeek, J., A new method for estimating the effort required to control an infectious disease, Proc R Soc Lond B Biol Sci, 270, 1359-1364, (2003) · doi:10.1098/rspb.2003.2339
[25] Shuai, Z.; Heesterbeek, J.; Driessche, P., Extending the type reproduction number to infectious disease control targeting contacts between types, J Math Biol, 67, 1067-1082, (2013) · Zbl 1278.92031 · doi:10.1007/s00285-012-0579-9
[26] Shuai, Z.; Heesterbeek, J.; Driessche, P., Erratum to: extending the type reproduction number to infectious disease control targeting contacts between types, J Math Biol, 71, 255-257, (2015) · Zbl 1312.92030 · doi:10.1007/s00285-015-0858-3
[27] Terpstra W (2003) Human leptospirosis: guidance for diagnosis, surveillance and control. World Health Organization, Geneva
[28] Tien, JH; Earn, DJ, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull Math Biol, 72, 1506-1533, (2010) · Zbl 1198.92030 · doi:10.1007/s11538-010-9507-6
[29] Triampo, W.; Baowan, D.; Tang, I.; Nuttavut, N.; Wong-Ekkabut, J.; Doungchawee, G., A simple deterministic model for the spread of leptospirosis in Thailand, Int J Biol Med Sci, 2, 22-26, (2007)
[30] Ullmann, L.; Langoni, H., Interactions between environment, wild animals and human leptospirosis, J Venom Anim Toxins Incl Trop Dis, 17, 119-129, (2011) · doi:10.1590/S1678-91992011000200002
[31] Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 29-48, (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[32] Vargas-De-León, C., On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, Chaos Solitons Fractals, 44, 1106-1110, (2011) · Zbl 1355.92130 · doi:10.1016/j.chaos.2011.09.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.