×

Weakly over-penalized discontinuous Galerkin schemes for Reissner-Mindlin plates without the shear variable. (English) Zbl 1401.65128

Summary: This paper introduces a new locking-free formulation that combines the discontinuous Galerkin methods with weakly over-penalized techniques for Reissner-Mindlin plates. We derive optimal a priori error estimates in both the energy norm and \(L^2\) norm for polynomials of degree \(k=2\), and we extend the results concerning the energy norm to higher-order polynomial degrees. Numerical tests confirm our theoretical predictions.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics

Software:

PZ
Full Text: DOI

References:

[1] Arnold, D.N., Brezzi, F., Falk, R.S., Marini, L.D.: Locking-free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Eng. 196(37-40), 3660-3671 (2007) · Zbl 1173.74396 · doi:10.1016/j.cma.2006.10.023
[2] Arnold, D.N., Brezzi, F., Marini, L.D.: A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate. J. Sci. Comput. 22(23), 25-45 (2005) · Zbl 1065.74068 · doi:10.1007/s10915-004-4134-8
[3] Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26(6), 1276-1290 (1989) · Zbl 0696.73040 · doi:10.1137/0726074
[4] Arnold, D.N., Falk, R.S.: The boundary layer for the Reissner-Mindlin plate model. SIAM J. Math. Anal. 21(2), 281-312 (1990) · Zbl 0698.73042 · doi:10.1137/0521016
[5] Arnold, D.N., Falk, R.S.: Analysis of a linear-linear finite element for the Reissner-Mindlin plate model. Math. Models Methods Appl. Sci. 7(2), 217-238 (1997) · Zbl 0869.73068 · doi:10.1142/S0218202597000141
[6] Badia, S., Codina, R., Gudi, T., Guzmán, J.: Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity. IMA J. Numer. Anal. 34(2), 800-819 (2014) · Zbl 1452.76040
[7] Beirão da Veiga, L., Chinosi, C., Lovadina, C., Stenberg, R.: A-priori and a-posteriori error analysis for a family of Reissner-Mindlin plate elements. BIT 48(2), 189-213 (2008) · Zbl 1143.74050 · doi:10.1007/s10543-008-0175-y
[8] Bösing, P.R., Madureira, A.L., Mozolevski, I.: A new interior penalty discontinuous Galerkin method for the Reissner-Mindlin model. Math. Models Methods Appl. Sci. 20(8), 1343-1361 (2010) · Zbl 1200.65091 · doi:10.1142/S0218202510004623
[9] Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897-921 (1996) · Zbl 0859.65124 · doi:10.1090/S0025-5718-96-00746-6
[10] Brenner, S.C.: Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comput. 68(225), 25-53 (1999) · Zbl 0912.65099 · doi:10.1090/S0025-5718-99-01035-2
[11] Brenner, S.C.: Korn’s inequalities for piecewise \[H^1\] H1 vector fields. Math. Comput. 73(247), 1067-1087 (2004) · Zbl 1055.65118 · doi:10.1090/S0025-5718-03-01579-5
[12] Brenner, S.C., Owens, L., Sung, L.-Y.: Higher order weakly over-penalized symmetric interior penalty methods. J. Comput. Appl. Math. 236(11), 2883-2894 (2012) · Zbl 1273.65174 · doi:10.1016/j.cam.2012.01.025
[13] Brezzi, F., Fortin, M.: Numerical approximation of Mindlin-Reissner plates. Math. Comput. 47(175), 151-158 (1986) · Zbl 0596.73058 · doi:10.1090/S0025-5718-1986-0842127-7
[14] Brezzi, F., Marini, L.D.: A nonconforming element for the Reissner-Mindlin plate. Comput. Struct. 81(8—-11), 515-522 (2003). In honour of Klausürgen Bathe · doi:10.1016/S0045-7949(02)00418-2
[15] Bösing, P. R., Carstensen, C.: Discontinuous Galerkin with weakly over-penalized techniques for Reissner-Mindlin plates J. Sci. Comput. (in press) · Zbl 1329.74269
[16] Carstensen, C.: Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element. SIAM J. Numer. Anal. 39(6), 2034-2044 (2002). (electronic) · Zbl 1042.74049 · doi:10.1137/S0036142900371477
[17] Carstensen, C., Hu, J.: A posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates. Math. Comput. 77(262), 611-632 (2008) · Zbl 1130.74045 · doi:10.1090/S0025-5718-07-02028-5
[18] Carstensen, C., Schöberl, J.: Residual-based a posteriori error estimate for a mixed Reissner-Mindlin plate finite element method. Numer. Math. 103(2), 225-250 (2006) · Zbl 1095.74031
[19] Carstensen, C., Xie, X., Yu, G., Zhou, T.: A priori and a posteriori analysis for a locking-free low order quadrilateral hybrid finite element for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Eng. 200(9-12), 1161-1175 (2011) · Zbl 1225.74081 · doi:10.1016/j.cma.2010.06.035
[20] Chinosi, C., Lovadina, C., Marini, L.D.: Nonconforming locking-free finite elements for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Eng. 195(25-28), 3448-3460 (2006) · Zbl 1119.74047 · doi:10.1016/j.cma.2005.06.025
[21] Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér Rouge 7(R-3), 33-75 (1973) · Zbl 0302.65087
[22] Devloo, P. R. B.: Pz: An object oriented environment for scientific programming. Computer Methods in Applied Mechanics and Engineering 150(1-4):133-153 (1997). In: Symposium on Advances in Computational Mechanics · Zbl 0907.65115
[23] Durán, R., Liberman, E.: On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comput. 58(198), 561-573 (1992) · Zbl 0763.73054 · doi:10.2307/2153202
[24] Falk, R.S.: Finite elements for the Reissner-Mindlin plate. In: Boffi, D., Gastaldi, L. (eds.) Mixed finite elements, compatibility conditions, and applications. Lecture Notes in Mathematics, vol. 1939, pp. 195-232. Springer, Berlin, Heidelberg (2008) · Zbl 1167.74041
[25] Falk, R.S., Tu, T.: Locking-free finite elements for the Reissner-Mindlin plate. Math. Comput. 69(231), 911-928 (2000) · Zbl 0965.74063 · doi:10.1090/S0025-5718-99-01165-5
[26] Gudi, T.: A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comput. 79(272), 2169-2189 (2010) · Zbl 1201.65198 · doi:10.1090/S0025-5718-10-02360-4
[27] Hansbo, P., Heintz, D., Larson, M.G.: A finite element method with discontinuous rotations for the Mindlin-Reissner plate model. Comput. Methods Appl. Mech. Eng. 200(5-8), 638-648 (2011) · Zbl 1225.74090 · doi:10.1016/j.cma.2010.09.009
[28] Lovadina, C.: A low-order nonconforming finite element for Reissner-Mindlin plates. SIAM J. Numer. Anal. 42(6), 2688-2705 (2005) (electronic) · Zbl 1080.74048
[29] Lovadina, C., Stenberg, R.: A posteriori error analysis of the linked interpolation technique for plate bending problems. SIAM J. Numer. Anal. 43(5), 2227-2249 (2005) (electronic) · Zbl 1098.74055
[30] Marini, L. D.: Discontinuous Galerkin elements for Reissner-Mindlin plates. In Numerical Mathematics and Advanced Applications, pages 27-36. Springer, Berlin Heidelberg, 2008. Proceedings of ENUMATH 2007, Graz, Austria, September (2007) · Zbl 1155.74046
[31] Mozolevski, I., Bösing, P.R.: Sharp expressions for the stabilization parameters in symmetric interior-penalty discontinuous Galerkin finite element approximations of fourth-order elliptic problems. Comput. Methods Appl. Math. 7(4), 365-375 (2007) · Zbl 1136.65098
[32] Mozolevski, I., Süli, E., Bösing, P.R.: \[hp\] hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30(3), 465-491 (2007) · Zbl 1116.65117 · doi:10.1007/s10915-006-9100-1
[33] Süli, E., Mozolevski, \[I.: hp\] hp-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196(13-16), 1851-1863 (2007) · Zbl 1173.65360 · doi:10.1016/j.cma.2006.06.014
[34] Ye, X., Xu, C.: A discontinuous Galerkin method for the Reissner-Mindlin plate in the primitive variables. Appl. Math. Comput. 149(1), 65-82 (2004) · Zbl 1044.74045 · doi:10.1016/S0096-3003(02)00957-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.