×

A folding methodology for multivariate extremes: estimation of the spectral probability measure and actuarial applications. (English) Zbl 1401.62209

Summary: In this paper, the folding methodology developed in the context of univariate extreme value theory (EVT) by A. You et al. [J. Stat. Plann. Inference 140, No. 7, 1775–1787 (2010; Zbl 1184.62075)] is extended to a multivariate framework. Under the usual EVT assumption of regularly varying tails, our multivariate folding allows for the estimation of the spectral probability measure. A new weakly consistent estimator based on the classical empirical estimator is proposed. Its behaviour is illustrated through simulations and an actuarial application relative to reinsurance pricing in the case of an insurance data-set.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62M15 Inference from stochastic processes and spectral analysis
91B30 Risk theory, insurance (MSC2010)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60G70 Extreme value theory; extremal stochastic processes

Citations:

Zbl 1184.62075

References:

[1] Beirlant, J., Dierckx, G. & Guillou, A. (2005). Estimation of the extreme value index and regression on generalized quantile plots. Bernoulli11, 949-970. · Zbl 1123.62034
[2] Beirlant, J., Goegebeur, Y., Segers, J. & Teugels, J. L. (2004). Statistics of extremes: theory and applications. Chichester: John Wiley & Sons. · Zbl 1070.62036
[3] Beirlant, J., Vynckier, P. & Teugels, J. L. (1996). Excess functions and estimation of the extreme value index. Bernoulli2, 293-318. · Zbl 0870.62019
[4] Billingsley, P. (1999). Convergence of probability measures, 2nd ed. New York: Wiley-Interscience. · Zbl 0944.60003
[5] Cebrián, A. C., Denuit, M. & Lambert, M. (2003). Analysis of bivariate tail dependence using extreme value copulas: an application to the SOA medical large claims database. Belgian Actuarial Bulletin3(1), 33-41.
[6] Corcoran, J. N. & Schneider, U. (2003). Shift and scale coupling methods for perfect simulation. Probability in the Engineering and Informational Sciences17, 277-303. · Zbl 1336.60143
[7] Davis, R. A. & Mikosch, T. (1998). The sample autocorrelation of heavy-tailed processes with applications to arch. Annals of Statistics26, 2049-2080. · Zbl 0929.62092
[8] Dekkers, A. L. M., Einmahl, J. H. J. & de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. Annals of Statistics17, 1833-1855. · Zbl 0701.62029
[9] Einmahl, J. H. J., de Haan, L. & Huang, X. (1993). Estimating a multidimensional extreme-value distribution. Journal of Multivariate Analysis47, 35-47. · Zbl 0778.62047
[10] Einmahl, J. H. J., de Haan, L. & Piterbarg, V. I. (2001). Nonparametric estimation of the spectral measure of an extreme value distribution. Annals of Statistics29, 1401-1423. · Zbl 1043.62046
[11] Einmahl, J. H. J., de Haan, L. & Sinha, A. K. (1997). Estimating the spectral measure of an extreme value distribution. Stochastic Processes and their Applications70, 143-171. · Zbl 0905.62051
[12] Einmahl, J. H. J. & Segers, J. (2009). Maximum empirical likelihood estimation of the spectral measure of an extreme value distribution. Annals of Statistics37, 2953-2989. · Zbl 1173.62042
[13] Embrechts, P., Klüppelberg, C. & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin: Springer-Verlag. · Zbl 0873.62116
[14] Engle, R. F. (1982). Autoregressive conditional heteroscedastic models with estimates of the variance of United Kingdom inflation. Econometrica50, 987-1007. · Zbl 0491.62099
[15] Frees, E. W. & Valdez, E. A. (1998). Understanding using copulas. The North American Actuarial Journal2, 1-25. · Zbl 1081.62564
[16] Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publications de l’Institut de Statistique de l’Université de Paris9, 171-173. · Zbl 0093.15303
[17] de Haan, L. & Ferreira, A. (2006). Extreme value theory: an introduction. New York: Springer-Verlag. · Zbl 1101.62002
[18] de Haan, L. & Resnick, S. I. (1977). Limit theory for multivariate sample extremes. Zeitschrift für Warscheinlichkeitstheorie und Verwandte Gebiete40, 317-337. · Zbl 0375.60031
[19] de Haan, L. & de Ronde, J. (1998). Sea and wind: multivariate extremes at work. Extremes1, 7-46. · Zbl 0921.62144
[20] Hill, B. M. (1975). A simple general approach about the tail of a distribution. Annals of Statistics3, 1163-1174. · Zbl 0323.62033
[21] Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics3, 119-131. · Zbl 0312.62038
[22] Resnick, S. I. (1987). Extreme values, regular variation and point processes. New York: Springer-Verlag. · Zbl 0633.60001
[23] Resnick, S. I. (2006). Heavy-tail phenomena: probabilistic and statistical modeling. New York: Springer-Verlag. · Zbl 1152.62029
[24] Tawn, J. A. (1988). Bivariate extreme value theory: models and estimation. Biometrika75, 397-415. · Zbl 0653.62045
[25] Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. Journal of the American Statistical Association73, 812-815. · Zbl 0397.62034
[26] You, A., Schneider, U., Guillou, A. & Naveau, P. (2010). Improving extreme quantile estimation via a folding procedure. Journal of Statistical Planning and Inference140, 1775-1787. · Zbl 1184.62075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.