×

Generalized equilibrium and fixed point problems for Bregman relatively nonexpansive mappings in Banach spaces. (English) Zbl 1401.47006

Summary: In this paper, we introduce and study a hybrid iterative method for finding a common solution of a generalized equilibrium problem and a fixed point problem for a Bregman relatively nonexpansive mapping in reflexive Banach spaces. We prove that the sequences generated by the hybrid iterative algorithm converge strongly to a common solution of these problems. Further, we give some consequences of the main result. Finally, we discuss a numerical example to demonstrate the applicability of the iterative algorithm.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H05 Monotone operators and generalizations
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
Full Text: DOI

References:

[1] Alber,Y.I.: Metric and generalized projection operators in Banach spaces: Properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math., Vol. 178, Marcel Dekker, New York, pp. 15-50 (1996) · Zbl 0883.47083
[2] Agarwal, RP; Chen, JW; Cho, YJ, Strong convergence theorems for equilibrium problems and weak Bregman relatively nonexpansive mappings in Banach spaces, J. Inequal. Appl., 2013, 119, (2013) · Zbl 1471.47042 · doi:10.1186/1029-242X-2013-119
[3] Bauschke, HH; Borwein, JM; Combettes, PL, Essential smoothness, essential strict convexity, and Legendre function in Banach spaces, Comm. Contemp. Math., 3, 615-647, (2001) · Zbl 1032.49025 · doi:10.1142/S0219199701000524
[4] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud., 63, 123-145, (1994) · Zbl 0888.49007
[5] Bregman, LM, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Phys., 7, 200-217, (1967) · Zbl 0186.23807 · doi:10.1016/0041-5553(67)90040-7
[6] Butnariu, D., Iusem, A.N.: Totally convex functions for fixed points computation and and infinite dimensional optimization, Applied Optimization, vol. 40. Kluwer Academic, Dordrecht (2000) · Zbl 0960.90092 · doi:10.1007/978-94-011-4066-9
[7] Butnariu, D.; Reich, S.; Zaslavski, AJ, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., 7, 151-174, (2001) · Zbl 1010.47032 · doi:10.1515/JAA.2001.151
[8] Butnariu, D.; Resmerita, E., Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006, 39, (2006) · Zbl 1130.47046 · doi:10.1155/AAA/2006/84919
[9] Ceng, Lu-Chuan; Guu, Sy-Ming; Yao, Jen-Chih, Finding Common Solutions of a Variational Inequality, a General System of Variational Inequalities, and a Fixed-Point Problem via a Hybrid Extragradient Method, Fixed Point Theory and Applications, 2011, 626159, (2011) · Zbl 1222.49010 · doi:10.1155/2011/626159
[10] Ceng, LC; Hadjisavvas, N.; Wong, NC, Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 46, 635-646, (2010) · Zbl 1198.47081 · doi:10.1007/s10898-009-9454-7
[11] Ceng, LC; Wang, CY; Yao, JC, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Meth. Oper. Res., 67, 375-390, (2008) · Zbl 1147.49007 · doi:10.1007/s00186-007-0207-4
[12] Chen, JW; Wan, Z-P; Yuan, L-Y; Zheng, Y., Approximation of fixed points of weak Bregman relatively nonexpansive mappings in Banach spaces, Inter. J. Math. Math. Sci., 2011, 23, (2011) · Zbl 1301.47082
[13] Cholamjiak, P.; Suantai, S., Iterative methods for solving equilibrium problems, variational inequalities and fixed points of nonexpansive semigroups, J. Glob. Optim., 57, 1277-1297, (2013) · Zbl 1339.47082 · doi:10.1007/s10898-012-0029-7
[14] Cholamjiak, P. and Sunthrayuth, P.: A Halpern-type iteration for solving the split feasibility problem and the fixed point problem of Bregman relatively nonexpansive semigroup in Banach spaces. Filomat 32(9) (2018) · Zbl 1497.47098
[15] Daniele, P., Giannessi, F., Mougeri, A. (eds.): Equilibrium problems and variational models. Nonconvex optimization and its application, vol. 68. Kluwer Academic Publications, Norwell (2003)
[16] Djafari-Rouhani, B.; Kazmi, KR; Rizvi, SH, A hybrid-extragradient-convex approximation method for a system of unrelated mixed equilibrium problems, Trans. Math. Program. Appl., 1, 82-95, (2013)
[17] Dong, QL; Lu, YY, A new hybrid algorithm for a nonexpansive mapping, Fixed Point Theory Appl., 2015, 37, (2015) · Zbl 1317.90322 · doi:10.1186/s13663-015-0285-6
[18] Hartman, P.; Stampacchia, G., On some non-linear elliptic differential-functional equation, Acta Math., 115, 271-310, (1966) · Zbl 0142.38102 · doi:10.1007/BF02392210
[19] Huang, YY; Jeng, JC; Kuo, TY; Hong, CC, Fixed point and weak convergence theorems for point-dependent \(λ \)-hybrid mappings in Banach spaces, Fixed Point Theory Appl., 2011, 105, (2011) · Zbl 1311.47069 · doi:10.1186/1687-1812-2011-105
[20] Kassay, G.; Reich, S.; Sabach, S., Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim., 21, 1319-1344, (2011) · Zbl 1250.47064 · doi:10.1137/110820002
[21] Kazmi, KR; Ali, R., Common solution to an equilibrium problem and a fixed point problem for an asymptotically quasi-\(ϕ \)-nonexpansive mapping in intermediate sense, RACSAM, 111, 877-889, (2017) · Zbl 06800615 · doi:10.1007/s13398-016-0331-1
[22] Kazmi, KR; Rizvi, SH; Ali, R., A hybrid iterative method without extrapolating step for solving mixed equilibrium problem, Creative Math. Inf., 24, 165-172, (2015) · Zbl 1389.49026
[23] Kazmi, KR; Farid, M., Some iterative schemes for generalized vector equilibrium problems and relatively nonexpansive mappings in Banach spaces, Math. Sci., 7, 19, (2013) · Zbl 1296.47081 · doi:10.1186/2251-7456-7-19
[24] Korpelevich, GM, The extragradient method for finding saddle points and other problems, Matecon, 12, 747-756, (1976) · Zbl 0342.90044
[25] Malitsky, YV; Semenov, VV, A hybrid method without extrapolating step for solving variational inequality problems, J. Glob. Optim., 61, 193-202, (2015) · Zbl 1366.47018 · doi:10.1007/s10898-014-0150-x
[26] Martin-Marquez, V.; Reich, S.; Sabach, S., Iterative methods for approximating fixed points of Bregman nonexpansive operators, Discrete Contin. Dyn. Syst. Ser. S, 6, 1043-1063, (2013) · Zbl 1266.26023 · doi:10.3934/dcdss.2013.6.1043
[27] Matsushita, S.; Takahashi, W., A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, 134, 257-266, (2005) · Zbl 1071.47063 · doi:10.1016/j.jat.2005.02.007
[28] Moudafi, A.: Second order differential proximal methods for equilibrium problems. J. Inequal. Pure Appl. Math. 4(1), 1-7 (2003) · Zbl 1175.90413
[29] Nadezhkina, N.; Takahashi, W., Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz continuous monotone mapping, SIAM J. Optim., 16, 1230-1241, (2006) · Zbl 1143.47047 · doi:10.1137/050624315
[30] Nakajo, K.; Takahashi, W., Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279, 372-379, (2003) · Zbl 1035.47048 · doi:10.1016/S0022-247X(02)00458-4
[31] Reem, D.; Reich, S., Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization, Rend. Circ. Mat. Palermo II. Ser, 67, 337-371, (2018) · Zbl 1401.90233
[32] Reem, D., Reich, S., De Pierro, A.: Re-examination of Bregman functions and new properties of their divergences. arXiv:1803.00641v1 (2018)
[33] Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and applications of nonlinear operators. Marcel Dekker, New York, pp. 313-318 (1996) · Zbl 0943.47040
[34] Reich, S.; Sabach, S., A strong convergence theorem for a proximal-type algorithm in reflexive Banach space, J. Nonlinear Convex Anal., 10, 471-485, (2009) · Zbl 1180.47046
[35] Reich, S.; Sabach, S., Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., 73, 122-135, (2010) · Zbl 1226.47089 · doi:10.1016/j.na.2010.03.005
[36] Reich, S.; Sabach, S., Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer. Funct. Anal. Optim., 31, 22-44, (2010) · Zbl 1200.47085 · doi:10.1080/01630560903499852
[37] Reich, S.; Sabach, S., A projection method for solving nonlinear problems in reflexive Banch spaces, J. Fixed Point Theory Appl., 9, 101-116, (2011) · Zbl 1206.47043 · doi:10.1007/s11784-010-0037-5
[38] Reich, S.; Sabach, S., Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces, Contemp. Math., 568, 225-240, (2012) · Zbl 1293.47065 · doi:10.1090/conm/568/11285
[39] Senakka, P.; Cholamjiak, P., Approximation method for solving fixed point problem of Bregman strongly nonexpansive mappings in reflexive Banach spaces, Ric. Mat., 65, 209-220, (2016) · Zbl 1351.47052 · doi:10.1007/s11587-016-0262-3
[40] Suantai, S.; Cho, YJ; Cholamjiak, P., Halpern’s iteration for Bregman strongly nanexpansive mappings in reflexive Banach space, Comput. Math. Appl., 64, 489-499, (2012) · Zbl 1252.65100 · doi:10.1016/j.camwa.2011.12.026
[41] Suantai, S.; Cholamjiak, P., Algorithms for solving generalized equilibrium problems and fixed points of nonexpansive semigroups in Hilbert spaces, Optimization, 63, 799-815, (2014) · Zbl 1524.47120 · doi:10.1080/02331934.2012.684355
[42] Takahashi, W.; Zembayashi, K., Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mmapings in Banach spaces, Nonlinear Anal., 70, 45-57, (2009) · Zbl 1170.47049 · doi:10.1016/j.na.2007.11.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.