×

Besicovitch-Federer projection theorem for continuously differentiable mappings having constant rank of the Jacobian matrix. (English) Zbl 1401.28009

The main theorem of the paper states, in slightly other words, that any \({\mathcal C}^1\)-neighbourhood of a function with constant rank of the Jacobi matrix equal to \(m\) contains a function such that its image has zero \(m\)-dimensional Hausdorff measure.

MSC:

28A75 Length, area, volume, other geometric measure theory
57N20 Topology of infinite-dimensional manifolds

References:

[1] Almgren, JFJ, Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. Math., 2, 321-391, (1968) · Zbl 0162.24703 · doi:10.2307/1970587
[2] Besicovitch, AS, On the fundamental geometrical properties of linearly measurable plane sets of points (III), Math. Ann., 116, 349-357, (1939) · JFM 65.0197.04 · doi:10.1007/BF01597361
[3] David, G; Semmes, S, Uniform rectifiability and quasiminimizing sets of arbitrary codimension, Mem. Am. Math. Soc., 144, viii + 132, (2000) · Zbl 0966.49024 · doi:10.1090/memo/0687
[4] Federer, H, The \((φ , k)\) rectifiable subsets of \(n\)-space, Trans. Am. Soc., 62, 114-192, (1947) · Zbl 0032.14902
[5] Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969) · Zbl 0176.00801
[6] Federer, H; Fleming, WH, Normal and integral currents, Ann. Math., 2, 458-520, (1960) · Zbl 0187.31301 · doi:10.2307/1970227
[7] Feuvrier, V.: Un résultat d’existence pour les ensembles minimaux par optimisation sur des grilles polyédrales. Doctoral thesis(French), Mathématiques [math] Université Paris Sud. https://tel.archives-ouvertes.fr/tel-00348735/document (2008)
[8] Hajłasz, P.: Sobolev mappings, co-area formula and related topics. In: Proceedings on analysis and geometry (Russian) (Novosibirsk Akademgorodok, 1999), pp. 227-254. Izdat. Ross. Akad. Nauk Sib. Otd. Inst. Mat, Novosibirsk (2000) · Zbl 0988.28002
[9] Mattila, P.: Geometry of sets and measures in Euclidean spaces: fractals and rectifiability. Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (1995). https://doi.org/10.1017/CBO9780511623813 · Zbl 0819.28004 · doi:10.1017/CBO9780511623813
[10] Pugh, H, A localized Besicovitch-federer projection theorem, ArXiv e-prints, 1607, 01758, (2016)
[11] Spivak, M.: Calculus on manifolds. A modern approach to classical theorems of advanced calculus. W. A. Benjamin Inc, New York (1965) · Zbl 0141.05403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.