×

Weak Brill-Noether for rational surfaces. (English) Zbl 1401.14186

Budur, Nero (ed.) et al., Local and global methods in algebraic geometry. Conference in honor of Lawrence Ein’s 60th birthday, University of Illinois at Chicago, IL, USA, May 12–15, 2016. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-3488-5/pbk; 978-1-4704-4850-9/ebook). Contemporary Mathematics 712, 81-104 (2018).
Summary: A moduli space of sheaves satisfies weak Brill-Noether if the general sheaf in the moduli space has no cohomology. Göttsche and Hirschowitz prove that on \(\mathbb {P}^2\) every moduli space of Gieseker semistable sheaves of rank at least two and Euler characteristic zero satisfies weak Brill-Noether. In this paper, we give sufficient conditions for weak Brill-Noether to hold on rational surfaces. We completely characterize Chern characters on Hirzebruch surfaces for which weak Brill-Noether holds. We also prove that on a del Pezzo surface of degree at least 4 weak Brill-Noether holds if the first Chern class is nef.
For the entire collection see [Zbl 1397.14004].

MSC:

14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14J26 Rational and ruled surfaces
14D20 Algebraic moduli problems, moduli of vector bundles
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)

References:

[1] Beauville, Arnaud, Complex algebraic surfaces, London Mathematical Society Lecture Note Series 68, iv+132 pp. (1983), Cambridge University Press, Cambridge · Zbl 0849.14014
[2] Bondal, A. I., Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat.. Math. USSR-Izv., 53 34, 1, 23-42 (1990) · Zbl 0692.18002
[3] Coskun, Izzet, Degenerations of surface scrolls and the Gromov-Witten invariants of Grassmannians, J. Algebraic Geom., 15, 2, 223-284 (2006) · Zbl 1105.14072
[4] Coskun, Izzet, The enumerative geometry of Del Pezzo surfaces via degenerations, Amer. J. Math., 128, 3, 751-786 (2006) · Zbl 1099.14029
[5] Coskun, Izzet; Huizenga, Jack, The birational geometry of the moduli spaces of sheaves on \(\mathbb{P}^2\). Proceedings of the G\`“okova Geometry-Topology Conference 2014, 114-155 (2015), G\'”okova Geometry/Topology Conference (GGT), G\`“okova · Zbl 1354.14065
[6] Gimigliano, Alessandro, ON LINEAR SYSTEMS OF PLANE CURVES, (no paging) pp. (1987), ProQuest LLC, Ann Arbor, MI · Zbl 0702.14003
[7] G\`“ottsche, Lothar; Hirschowitz, Andr\'”e, Weak Brill-Noether for vector bundles on the projective plane. Algebraic geometry, Catania, 1993/Barcelona, 1994, Lecture Notes in Pure and Appl. Math. 200, 63-74 (1998), Dekker, New York · Zbl 0937.14010
[8] Harbourne, Brian, The geometry of rational surfaces and Hilbert functions of points in the plane. Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conf. Proc. 6, 95-111 (1986), Amer. Math. Soc., Providence, RI · Zbl 0611.14002
[9] Hartshorne, Robin, Algebraic geometry, xvi+496 pp. (1977), Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[10] Hirschowitz, Andr\'e, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationnelles g\'en\'eriques, J. Reine Angew. Math., 397, 208-213 (1989) · Zbl 0686.14013
[11] Huizenga, Jack, Effective divisors on the Hilbert scheme of points in the plane and interpolation for stable bundles, J. Algebraic Geom., 25, 1, 19-75 (2016) · Zbl 1369.14011
[12] Huizenga, Jack, Birational geometry of moduli spaces of sheaves and Bridgeland stability. Surveys on recent developments in algebraic geometry, Proc. Sympos. Pure Math. 95, 101-148 (2017), Amer. Math. Soc., Providence, RI · Zbl 1402.14056
[13] Huybrechts, Daniel; Lehn, Manfred, The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, xviii+325 pp. (2010), Cambridge University Press, Cambridge · Zbl 1206.14027
[14] Kuleshov, S. A.; Orlov, D. O., Exceptional sheaves on Del Pezzo surfaces, Izv. Ross. Akad. Nauk Ser. Mat.. Russian Acad. Sci. Izv. Math., 58 44, 3, 479-513 (1995) · Zbl 0842.14009
[15] Le Potier, J., Lectures on vector bundles, Cambridge Studies in Advanced Mathematics 54, viii+251 pp. (1997), Cambridge University Press, Cambridge · Zbl 0872.14003
[16] Manin, Yu. I.; Hazewinkel, M., Cubic forms: algebra, geometry, arithmetic, vii+292 pp. (1974), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York · Zbl 0277.14014
[17] Rudakov, A. N., Exceptional vector bundles on a quadric, Izv. Akad. Nauk SSSR Ser. Mat.. Math. USSR-Izv., 52 33, 1, 115-138 (1989) · Zbl 0708.14012
[18] Segre, Beniamino, Alcune questioni su insiemi finiti di punti in geometria algebrica, Univ. e Politec. Torino Rend. Sem. Mat., 20, 67-85 (1960/1961) · Zbl 0104.38903
[19] Walter, Charles, Irreducibility of moduli spaces of vector bundles on birationally ruled surfaces. Algebraic geometry, Catania, 1993/Barcelona, 1994, Lecture Notes in Pure and Appl. Math. 200, 201-211 (1998), Dekker, New York · Zbl 0947.14019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.