×

Green’s functions on Mumford curves. (English) Zbl 1401.11106

The paper in question introduces and studies an analogue of Green’s function on Mumford curves. Let us introduce some notation.
\(F\) denotes a non-Archimedean local field with finite residue field \(\mathbb{F}_q\) and completed algebraic closure \(\mathbb{C}_F\). Put \(\mathcal{H}:= \mathbb{C}_F\setminus F\), the Drinfeld upper half-plane, and let \(\Gamma\) be a discrete subgroup of \[ \mathrm{PGL}_2^+(F) = \{g \in \mathrm{PGL}_2(F)\mid \det(g) \text{ has even order}\}. \] Let further \(\lambda: \mathcal{H} \longrightarrow\mathcal{T}(\mathbb{Q})\) be the building map onto the points of the Bruhat-Tits building \(\mathcal{T}\) with rational barycentric coordinates. We suppose that \(\Gamma\setminus \mathcal{T}\) is a finite graph (that is, \(\Gamma\) is cocompact in \(\mathrm{PGL}_2(F)\)). For \(z \in \mathcal{H}\) let \(|z|_i := \inf_{a\in F}|z-a|\) be the “imaginary part”, and for \(z,w \in \mathcal{H}\), \[ d(z,w):= |z-w|^2/|z|_i|w_i| \] the “hyperbolic distance”. It satisfies \[ \max\{ \log_q d(z,w),0\} = \ell(\lambda(z),\lambda(w)) \] with the distance function \(\ell\) on \(\mathcal{T}(\mathbb{Q})\).
The Schottky group \(\Gamma\) determines a Mumford curve \(X_{\Gamma}\) over \(\mathbb{C}_F\) with points \(X_{\Gamma}(\mathbb{C}_F) = \Gamma \setminus \mathcal{H}\).
The author defines the Green’s function \[ G_{\Gamma}(z,w,s) = \sum_{\gamma \in \Gamma} d(z,\gamma w)^{-s}, \] where \(z,w \in \mathcal{H}\), \(\Gamma z \not= \Gamma w\), and \(s \in \mathbb{C}\). This is (modulo convergence) a symmetric function on \(X_{\Gamma}(\mathbb{C}_F) \times X_{\Gamma}(\mathbb{C}_F)\) minus the diagonal. The main result is Theorem 1.1, which states:
(i)
\(G_{\Gamma}(z,w,s)\) converges absolutely for \(\mathrm{Re}(s) >1\) and has a meromorphic extension to \(\mathbb{C}\);
(ii)
it is holomorphic at \(s=0\) and may be explicitly evaluated there with a value independent of \(z,w\);
(iii)
given divisors \(D,E\) of degree 0 on \(X_{\Gamma}\) with disjoint support, \(G_{\Gamma}(D,E,s)\) may be defined through linear extension; then \[ \frac{\partial}{\partial s} G_{\Gamma}(D,E,s)|_{s=0} = -2 \langle D,E \rangle \] holds, where \(\langle .\,,. \rangle\) is the local height pairing.
Also, a variant of Green’s function on \(\mathcal{T}(\mathbb{Q})\) is given. These are related in Theorem 1.2 and 1.3 with Manin-Drinfeld theta functions on \(\mathcal{H}\), and with certain functions stemming from the geometry of \(\mathcal{T}\).

MSC:

11G09 Drinfel’d modules; higher-dimensional motives, etc.
11F52 Modular forms associated to Drinfel’d modules
14H25 Arithmetic ground fields for curves
14H55 Riemann surfaces; Weierstrass points; gap sequences
31C12 Potential theory on Riemannian manifolds and other spaces
Full Text: DOI

References:

[1] Chinburg, T., Rumely, R.: The capacity pairing. J. Reine Angew. Math. 434, 1-44 (1993) · Zbl 0756.14013
[2] Freije, R.M.: A \[p\] p-adic analogue of the Gauss-Bonnet theorem for certain Mumford curves. Proc. Am. Math. Soc. 107(2), 323-332 (1989) · Zbl 0686.14036
[3] Freije, R.M.: Intersection formulas for Mumford curves. Contemp. Math. 133, 103-118 (1992) · Zbl 0793.14016 · doi:10.1090/conm/133/1183973
[4] Gekeler, E.-U.: On the Drinfeld discriminant function. Compos. Math. 106(2), 181-202 (1997) · Zbl 0930.11031 · doi:10.1023/A:1000169607214
[5] Gekeler, E.-U., Reversat, M.: Jacobians of Drinfeld modular curves. J. Reine Angew Math. 476, 27-93 (1996) · Zbl 0848.11029
[6] Gerritzen, L., van der Put, M.: Schottky Groups and Mumford Curves, Lecture Notes in Mathematics. 817, Springer (1980) · Zbl 0442.14009
[7] Goldman, O., Iwahori, N.: The space of \[p\] p-adic norms. Acta Math. 109, 137-177 (1963) · Zbl 0133.29402 · doi:10.1007/BF02391811
[8] Gross, B. H.: Local heights on curves. In: Cornell/Silverman (ed) Arithmetic Geometry, pp. 327-339, Springer (1986) · Zbl 0605.14027
[9] Hejhal, D.: The Selberg trace formula for \[\text{PSL}(2, \mathbb{R})\] PSL(2,R). In: Dold, A., Eckmann, B. (eds.) Lecture Notes in Mathematics 1001 Berlin-Heidelberg-New York-Tokyo. Springer, Berlin (1983) · Zbl 0543.10020
[10] Kontani, M., Sunada, T.: Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo 7, 7-25 (2000) · Zbl 0978.05051
[11] Mumford, D.: An analytic construction of degenerating curves over complete local rings. Compositio Math. 24(2), 129-174 (1972) · Zbl 0228.14011
[12] Néron, A.: Quasi-fonctions at hauteurs sur les variétés abtliennes. Ann. Math. 82, 249-331 (1965) · Zbl 0163.15205 · doi:10.2307/1970644
[13] Papikian, M.: Graph Laplacians, discriminants, and Drinfeld modular curves. Münster J. Math. 9, 221-251 (2016) · Zbl 1368.11055
[14] Serre, J.-P.: Trees. Springer, Berlin (1980) · Zbl 0548.20018 · doi:10.1007/978-3-642-61856-7
[15] Tipp, U., Local height pairings of Heegner points on Drinfeld modular curves. In: Proceedings of the Workshop on Drinfeld modules, Modular Schemes and Applications, Alden-Biesen, World Scientific, pp. 344-356 (1996) · Zbl 0924.11050
[16] Tipp, U.: Green’s functions for Drinfeld modular curves. J. Number Theory 77, 171-199 (1999) · Zbl 0968.11026 · doi:10.1006/jnth.1998.2370
[17] Werner, A.: Local heights on Mumford curves. Math. Annalen 306, 819-831 (1996) · Zbl 0859.14008 · doi:10.1007/BF01445278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.