×

A semi-Markov decision model for recognizing the destination of a maneuvering agent in real time strategy games. (English) Zbl 1400.90296

Summary: Recognizing destinations of a maneuvering agent is important in real time strategy games. Because finding path in an uncertain environment is essentially a sequential decision problem, we can model the maneuvering process by the Markov decision process (MDP). However, the MDP does not define an action duration. In this paper, we propose a novel semi-Markov decision model (SMDM). In the SMDM, the destination is regarded as a hidden state, which affects selection of an action; the action is affiliated with a duration variable, which indicates whether the action is completed. We also exploit a Rao-Blackwellised particle filter (RBPF) for inference under the dynamic Bayesian network structure of the SMDM. In experiments, we simulate agents’ maneuvering in a combat field and employ agents’ traces to evaluate the performance of our method. The results show that the SMDM outperforms another extension of the MDP in terms of precision, recall, and \(F\)-measure. Destinations are recognized efficiently by our method no matter whether they are changed or not. Additionally, the RBPF infer destinations with smaller variance and less time than the SPF. The average failure rates of the RBPF are lower when the number of particles is not enough.

MSC:

90C40 Markov and semi-Markov decision processes
91A43 Games involving graphs
91A15 Stochastic games, stochastic differential games
Full Text: DOI

References:

[1] Bakkes, S. C. J.; Spronck, P. H. M.; van Lankveld, G., Player behavioural modelling for video games, Entertainment Computing, 3, 3, 71-79, (2012) · doi:10.1016/j.entcom.2011.12.001
[2] Raghavana, S.; Singlab, P.; Mooney, R. J.; Sukthankar, G.; Goldman, R. P.; Geib, C., Plan recognition using statistical-relational models, Plan, Activity, and Intent Recognition: Theory and Practice, 57-85, (2014), Waltham, Mass, USA: Elsevier, Waltham, Mass, USA
[3] Robertson, G.; Watson, I., A review of real-time strategy game AI, AI Magazine, 35, 4, 75-104, (2014)
[4] Ragi, S.; Tan, C.; Chong, E. K., Guidance of autonomous amphibious vehicles for flood rescue support, Mathematical Problems in Engineering, 2013, (2013) · doi:10.1155/2013/528162
[5] Bui, H. H.; Venkatesh, S.; West, G., Policy recognition in the abstract hidden Markov model, Journal of Artificial Intelligence Research, 17, 451-499, (2002) · Zbl 1053.68101
[6] Yue, S. G.; Zha, Y. B.; Yin, Q. J.; Zhang, Q., Path plan recognition by CGF based on abstract hidden Markov model, Journal of National University of Defense Technology, 36, 1, 148-153, (2014) · doi:10.11887/j.cn.201401026
[7] Wiering, M.; van Otterlo, M., Reinforcement Learning: State-of-the-Art, (2011), Berlin, Germany: Springer, Berlin, Germany
[8] Southey, F.; Loh, W.; Wilkinson, D., Inferring complex agent motions from partial trajectory observations, Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI ’07)
[9] Murphy, K.; Russell, S.; Doucet, A.; de Freitas, N.; Gordon, N. J., Rao-blackwellised particle filtering for dynamic Bayesian networks, Sequential Monte Carlo Methods in Practice, (2001), Springer
[10] Kautz, H. A.; Allen, J. F., Generalized plan recognition, Proceedings of the 5th National Conference on Artificial Intelligence
[11] Avrahami-Zilberbrand, D.; Kaminka, G. A., Fast and complete symbolic plan recognition, Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI ’05)
[12] Zhuo, H. H.; Muñoz-Avila, H.; Yang, Q., Learning hierarchical task network domains from partially observed plan traces, Artificial Intelligence, 212, 134-157, (2014) · Zbl 1405.68333 · doi:10.1016/j.artint.2014.04.003
[13] Auslander, B.; Gupta, K. M.; Aha, D. W., Maritime threat detection using plan recognition, Proceedings of the 23rd Annual Conference on Homeland Security Technology · doi:10.1109/THS.2012.6459857
[14] Koller, D.; Friedman, N., Probabilistic Graphical Models: Principles and Techniques, (2009), Cambridge, Mass, USA: MIT Press, Cambridge, Mass, USA · Zbl 1183.68483
[15] Masato, D.; Norman, T. J.; Vasconcelos, W. W.; Sycara, K., Agent-oriented incremental team and activity recognition, Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI ’11) · doi:10.5591/978-1-57735-516-8/ijcai11-237
[16] Sadilek, A.; Kautz, H., Location-based reasoning about complex multi-agent behavior, Journal of Artificial Intelligence Research, 43, 87-133, (2012) · Zbl 1237.68161 · doi:10.1613/jair.3421
[17] Kosmopoulos, D. I.; Doulamis, N. D.; Voulodimos, A. S., Bayesian filter based behavior recognition in workflows allowing for user feedback, Computer Vision and Image Understanding, 116, 3, 422-434, (2012) · doi:10.1016/j.cviu.2011.09.006
[18] He, L.; Zong, C.-F.; Wang, C., Driving intention recognition and behaviour prediction based on a double-layer hidden Markov model, Journal of Zhejiang University: Science C, 13, 3, 208-217, (2012) · doi:10.1631/jzus.c11a0195
[19] Doshi, P.; Qu, X.; Goodie, A.; Sukthankar, G.; Goldman, R. P.; Geib, C., Decision-theoretic planning in multi-agent settings with application to behavioral modeling, Plan, Activity, and Intent Recognition: Theory and Practice, 205-224, (2014), Waltham, Mass, USA: Elsevier, Waltham, Mass, USA
[20] Mao, W. J.; Gratch, J.; Li, X. C., Probabilistic plan inference for group behavior prediction, IEEE Intelligent Systems, 27, 4, 27-36, (2012) · doi:10.1109/mis.2010.133
[21] Geib, C. W.; Goldman, R. P., A probabilistic plan recognition algorithm based on plan tree grammars, Artificial Intelligence, 173, 11, 1101-1132, (2009) · doi:10.1016/j.artint.2009.01.003
[22] Hladky, S.; Bulitko, V., An evaluation of models for predicting opponent positions in first-person shooter video games, Proceedings of the IEEE Symposium on Computational Intelligence and Games (CIG ’08), IEEE · doi:10.1109/cig.2008.5035619
[23] Zouaoui-Elloumi, S.; Roy, V.; Marmorat, J. P., Securing harbors by modeling and classifying ship behavior, Proceedings of the 20th Annual Conference on Behavior Representation in Modeling and Simulation
[24] Duong, T.; Phung, D.; Bui, H.; Venkatesh, S., Efficient duration and hierarchical modeling for human activity recognition, Artificial Intelligence, 173, 7-8, 830-856, (2009) · doi:10.1016/j.artint.2008.12.005
[25] van Kasteren, T. L. M.; Englebienne, G.; Kröse, B. J. A., Activity recognition using semi-Markov models on real world smart home datasets, Journal of Ambient Intelligence and Smart Environments, 2, 3, 311-325, (2010) · doi:10.3233/ais-2010-0070
[26] Auslander, B.; Gupta, K. M.; Aha, D. W., Maritime threat detection using probabilistic graphical models, Proceedings of the 25th International FLAIRS Conference, AAAI Press
[27] Ullman, T. D.; Baker, C. L.; Macindoe, O.; Evans, O.; Goodman, N. D.; Tenenbaum, J. B., Help or hinder: bayesian models of social goal inference, Proceedings of the 23rd Annual Conference on Neural Information Processing Systems (NIPS ’09)
[28] Tastan, B.; Chang, Y.; Sukthankar, G., Learning to intercept opponents in first person shooter games, Proceedings of the IEEE International Conference on Computational Intelligence and Games (CIG ’12), IEEE · doi:10.1109/cig.2012.6374144
[29] Weber, B. G.; Mateas, M.; Jhala, A., A particle model for state estimation in real-time strategy games, Proceedings of the 7th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE ’11), AAAI
[30] Pfeffer, A.; Das, S.; Lawless, D.; Ng, B., Factored reasoning for monitoring dynamic team and goal formation, Information Fusion, 10, 1, 99-106, (2009) · doi:10.1016/j.inffus.2008.05.005
[31] Lapuyade-Lahorgue, J.; Pieczynski, W., Unsupervised segmentation of hidden semi-Markov non-stationary chains, Signal Processing, 92, 1, 29-42, (2012) · doi:10.1016/j.sigpro.2011.06.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.