×

Fuzzy finish time modeling for project scheduling. (English) Zbl 1400.90183

Summary: This research aims at developing a new fuzzy activity finish time estimation model for project scheduling management. With the application of the fuzzy quality function deployment (FQFD) and fuzzy analytic hierarchy process (FAHP) methods, the degree of fuzziness for every project activity is calculated in accordance with considerations of project uncertainties. These uncertainties are measured by the risk level of such project-related characteristics as time limit, activity start time, budget, manpower, technological difficulty, and facility requirements. In this paper, rather than applying the de-fuzzification technique to obtain the crisp activity duration for project scheduling, the fuzzy finish time estimation method for every activity is proposed based on the degree of fuzziness. The corresponding fuzzy activity duration time plot is also developed in a new fuzzy Gantt chart. The proposed model can provide a reasonable fuzzy finish time estimation for every activity, while most scheduling methods only provide the finish time of the entire project. Compared to existing models, this time estimation model and its corresponding Gantt chart are predicted to have higher reliability and practical application in project management and scheduling.

MSC:

90B36 Stochastic scheduling theory in operations research
Full Text: DOI

References:

[1] Ash, R. C.; Pittman, P. H., Towards holistic project scheduling using critical chain methodology enhanced with PERT buffering, International Journal of Project Organization and Management, 1, 185-203, (2008) · doi:10.1504/IJPOM.2008.022191
[2] Azaron, A.; Perkgoz, C.; Sakawa, M., A genetic algorithm approach for the time-cost trade-off in PERT networks, Applied Mathematics and Computation, 168, 1317-1339, (2005) · Zbl 1082.65543 · doi:10.1016/j.amc.2004.10.021
[3] Azaron, A.; Katagiri, H.; Sakawa, M.; Kato, K.; Memariani, A., A multi-objective resource allocation problem in PERT networks, European Journal of Operational Research, 172, 838-854, (2006) · Zbl 1111.90051 · doi:10.1016/j.ejor.2004.11.018
[4] Banerjee, A.; Paul, A., On path correlation and PERT bias, European Journal of Operational Research, 189, 1208-1216, (2008) · Zbl 1142.62106 · doi:10.1016/j.ejor.2007.01.061
[5] Bottani, E., A fuzzy QFD approach to achieve agility, International Journal of Production Economics, 119, 380-391, (2009) · doi:10.1016/j.ijpe.2009.02.013
[6] Bottani, E.; Rizzi, A., Strategic management of logistics service: a fuzzy quality function deployment approach, International Journal Production Economics, 103, 585-599, (2006) · doi:10.1016/j.ijpe.2005.11.006
[7] Chen, C. T.; Huang, S. F., Applying fuzzy method for measuring criticality in project network, Information Sciences, 177, 2448-2458, (2007) · Zbl 1124.90013 · doi:10.1016/j.ins.2007.01.035
[8] Chen, M. K.; Hsu, S. P., Fuzzy critical chain based project management, Journal of the Chinese Institute of Industrial Engineers, 21, 167-176, (2004) · doi:10.1080/10170660409509398
[9] Chen, S. P., Analysis of critical paths in a project network with fuzzy activity times, European Journal of Operational Research, 183, 442-459, (2007) · Zbl 1128.90010 · doi:10.1016/j.ejor.2006.06.053
[10] Chen, Y.; Fung, R. Y.K.; Tang, J., Rating technical attributes in fuzzy QFD by integrating fuzzy weighted average method and fuzzy expected value operator, European Journal of Operational Research, 174, 1553-1566, (2006) · Zbl 1103.90329 · doi:10.1016/j.ejor.2004.12.026
[11] Cheng, C. H.; Mon, D. L., Evaluating weapon system by analytic hierarchy process based on fuzzy scales, Fuzzy Sets and Systems, 63, 1-10, (1994) · doi:10.1016/0165-0114(94)90140-6
[12] Cohen, I.; Mandelbaum, A.; Shtub, A., Multi-project scheduling and control: a process-based comparative study of the critical chain methodology and some alternatives, Project Management Journal, 35, 39-50, (2004)
[13] Franceschini, F.; Rupil, A., Rating scales and prioritization in QFD, International Journal of Quality & Reliability Management, 16, 85-97, (1999) · doi:10.1108/02656719910250881
[14] Goren, S.; Sabuncuoglu, I., Robustness and stability measures for scheduling: single-machine environment, IIE Transactions, 40, 66-83, (2008) · doi:10.1080/07408170701283198
[15] Kahraman, C.; Ertay, T.; Büyüközkan, G., A fuzzy optimization model for QFD planning process using analytic network approach, European Journal of Operational Research, 171, 390-411, (2006) · Zbl 1090.90016 · doi:10.1016/j.ejor.2004.09.016
[16] Kutanoglu, E.; Wu, S., Improving scheduling robustness via preprocessing and dynamic adaptation, IIE Transactions, 36, 1107-1124, (2004) · doi:10.1080/07408170490500681
[17] Leus, R.; Herroelen, W., Stability and resource allocation in project planning, IIE Transactions, 36, 667-682, (2004) · doi:10.1080/07408170490447348
[18] Liang, T. F., Fuzzy multi-objective project management decisions using two-phase fuzzy goal programming approach, Computer and Industrial Engineering, 57, 1407-1416, (2009) · doi:10.1016/j.cie.2009.07.010
[19] Lin, M. C.; Wang, C. C.; Chen, T. C., A strategy for managing customer-oriented product design, Concurrent Engineering, 14, 231-244, (2006) · doi:10.1177/1063293X06068390
[20] Liu, S. T., Fuzzy activity times in critical path and project crashing problems, Cybernetics and Systems, 34, 161-172, (2003) · Zbl 1063.90029 · doi:10.1080/01969720302865
[21] Liu, Y. C.; Chuang, C. Y.; Yang, S. M., Application of fuzzy QFD for knowledge acquisition in product design, Proceedings of the, 9thAsiaPacificIndustrialEngineerandManagementSystemsConference, 2048-2059, (2008)
[22] Long, L. D.; Ohsato, A., Fuzzy critical chain method for project scheduling under resource constraints and uncertainly, International Journal of Project Management, 26, 688-698, (2008) · doi:10.1016/j.ijproman.2007.09.012
[23] Tukel, O. I.; Rom, W. O.; Eksioglu, S. D., An investigation of buffer sizing techniques in critical chain scheduling, European Journal of Operational Research, 172, 401-416, (2006) · Zbl 1120.90024 · doi:10.1016/j.ejor.2004.10.019
[24] Vanegas, L. V.; Labib, A. W., A fuzzy quality function deployment (FQFD) model for deriving optimum targets, International Journal of Production Research, 39, 99-120, (2001) · Zbl 0976.90500 · doi:10.1080/00207540010005079
[25] Wang, J. H.; Hao, J., Fuzzy linguistic PERT, IEEE Transactions on Fuzzy Systems, 15, 133-144, (2007) · doi:10.1109/TFUZZ.2006.879975
[26] Yakhchali, S. H.; Ghodsypour, S. H., Computing latest starting times of activities in interval-valued networks with minimal time lags, European Journal of Operational Research, 200, 874-880, (2010) · Zbl 1177.90191 · doi:10.1016/j.ejor.2009.01.051
[27] Yeo, K. T.; Ning, J. H., Managing uncertainty in major equipment procurement in engineering projects, European Journal of Operational Research, 171, 123-134, (2006) · Zbl 1091.90526 · doi:10.1016/j.ejor.2004.06.036
[28] Zammori, F. A.; Braglia, M.; Frosolini, M., A fuzzy multi-criteria approach for critical path definition, International Journal of Project Management, 27, 278-291, (2009) · doi:10.1016/j.ijproman.2008.03.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.