×

Geometry of the \(q\)-exponential distribution with dependent competing risks and accelerated life testing. (English) Zbl 1400.62230

Summary: In the information geometry suggested by S. I. Amari et al. [Differential geometry in statistical inference. Hayward, CA: Institute of Mathematical Statistics (1987; Zbl 0694.62001)], a parametric statistical model can be regarded as a differentiable manifold with the parameter space as a coordinate system. Note that the \(q\)-exponential distribution plays an important role in Tsallis statistics (see [C. Tsallis, Introduction to nonextensive statistical mechanics. Approaching a complex world. Berlin: Springer (2009; Zbl 1172.82004)]), this paper investigates the geometry of the \(q\)-exponential distribution with dependent competing risks and accelerated life testing (ALT). A copula function based on the \(q\)-exponential function, which can be considered as the generalized Gumbel copula, is discussed to illustrate the structure of the dependent random variable. Employing two iterative algorithms, simulation results are given to compare the performance of estimations and levels of association under different hybrid progressively censoring schemes (HPCSs).

MSC:

62N05 Reliability and life testing
53B05 Linear and affine connections
62N01 Censored data models
Full Text: DOI

References:

[1] Amari, S.; Wu, S., Improving support vector machine classifiers by modifying kernel functions, Neural Netw., 12, 783-789 (1999)
[2] Komaki, F., Asymptotic properties of Bayesian predictive densities when the distributions of data and target variables are different, Bayesian Anal., 10, 31-51 (2015) · Zbl 1335.62053
[3] Komaki, F., On asymptotic properties of predictive distributions, Biometrika, 83, 299-313 (1996) · Zbl 0864.62007
[4] Harsha, K. V.; Subrahamanian Moosath, K. S., Dually flat geometries of the deformed exponential family, Physica A, 433, 136-147 (2015) · Zbl 1360.62100
[5] Amari, S.; Barndorff-Nielsen, O. E.; Kass, R. E.; Lauritzen, S. L.; Rao, C. R., (Differential Geometry in Statistical Inference. Differential Geometry in Statistical Inference, IMS Lecture Notes: Monograph Series, vol. 10 (1987), Institute of Mathematical Statistics: Institute of Mathematical Statistics Hayward, California) · Zbl 0694.62001
[6] Tsallis, C., Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World (2009), Springer: Springer New York · Zbl 1172.82004
[7] Bercher, J.-F.; Vignat, C., A new look at \(q\)-exponential distributions via excess statistics, Physica A, 387, 5422-5432 (2008)
[8] Christopoulos, S.-R. G.; Sarlis, N. V., \(q\)-exponential relaxation of the expected avalanche size in the coherent noise model, Physica A, 407, 216-225 (2014) · Zbl 1396.82011
[9] Yamano, T., Some properties of \(q\)-logarithm and \(q\)-exponential functions in Tsallis statistics, Physica A, 305, 486-496 (2002) · Zbl 1039.33502
[10] Abe, S., Stability analysis of generalized entropies and \(q\)-exponential distributions, Physica D, 193, 84-89 (2004) · Zbl 1062.82025
[11] Pavlos, G. P.; Karakatsanis, L. P.; Xenakis, M. N.; Pavlos, E. G.; Iliopoulos, A. C.; Sarafopoulos, D. V., Universality of non-extensive Tsallis statistics and times eries analysis: Theory and applications, Physica A, 395, 58-95 (2014) · Zbl 1395.82124
[12] Ohara, A., Geometry of distributions associated with Tsallis statistics and properties of relative entropy minimization, Phys. Lett. A, 370, 184-193 (2007) · Zbl 1209.82003
[13] Matsuzoe, H., Hessian structures on deformed exponential families and their conformal structures, Differential Geom. Appl., 35, 323-333 (2014) · Zbl 1322.53019
[14] Amari, S., \( \alpha \)-geometry, Tsallis \(q\)-entropy and positive-definite matrices, (Information Geometry and its Applications (2016), Springer: Springer Japan), 71-106 · Zbl 1350.94001
[15] Matsuzoe, H.; Ohara, A., Geometry for q-exponential families, (Recent Progress in Differential Geometry and Its Related Fields (2011), World Scientific), 55-71 · Zbl 1263.60013
[16] Nelson, W., Accelerated Testing: Statistical Models, Test Plans, and Data Analyses (1990), New York Wiley · Zbl 0717.62089
[17] Zhang, Y.; Meeker, W. Q., Bayesian methods for planning accelerated life tests, Technometrics, 48, 49-60 (2006)
[18] Wu, M.; Shi, Y. M.; Zhang, C. F., Statistical analysis of dependent competing risks model in accelerated life testing under progressively hybrid censoring using copula function, Comm. Statist. Simulation Comput. (2015)
[19] Zhang, C. F.; Shi, Y. M.; Wu, M., Statistical inference for competing risks model in step-stress partially accelerated life tests with progressively Type-I hybrid censored Weibull life data, J. Comput. Appl. Math., 297, 65-74 (2016) · Zbl 1327.62501
[20] Han, D.; Tony Ng, H. K., Asymptotic comparison between constant-stress testing and step-stress testing for Type-I censored data from exponential distribution, Comm. Statist. Theory Methods, 43, 2384-2394 (2014) · Zbl 1462.62152
[21] Zhang, F. D.; Shi, Y. M., Permissible noninformative priors for the accelerated life test model with censored data, SpringerPlus, 5, 1-24 (2016)
[22] Xu, A. C.; Tang, Y. C., Reference optimality criterion for planning accelerated life testing, J. Statist. Plann. Inference, 167, 14-26 (2015) · Zbl 1326.62205
[23] Zhang, F. D.; Shi, Y. M., Geometry of exponential family with competing risks and censored data, Physica A, 446, 234-245 (2016) · Zbl 1400.62219
[24] Lo, S. M.S.; Wilke, R. A., A copula model for dependent competing risks, J. R. Stat. Soc. Ser. C, 59, 359-376 (2010)
[25] Zhang, X. P.; Shang, J. Z.; Chen, X.; Zhang, C. H.; Wang, Y. S., Statistical inference of accelerated life testing with dependent competing failures based on copula theory, IEEE Trans. Reliab., 63, 764-780 (2014)
[26] Nelsen, R., An Introduction to Copulas (2006), Springer: Springer New York · Zbl 1152.62030
[27] Balakrishnan, N.; Kundu, D., Hybrid censoring: Models, inferential results and applications, Comput. Statist. Data Anal., 57, 166-209 (2013) · Zbl 1365.62364
[28] Chan, P. S.; Tony Ng, H. K.; Su, F., Exact likelihood inference for the two-parameter exponential distribution under type-II progressively hybrid censoring, Metrika, 78, 747-770 (2015) · Zbl 1333.62230
[29] Balakrishnan, N.; Aggarwala, R., Progressive Censoring: Theory, Methods, and Applications (2000), Birkhäuser: Birkhäuser Boston
[30] Park, S.; Tony Ng, H. K.; Chan, P. S., On Fisher information and design of a flexible progressive censored experiment, Statist. Probab. Lett., 97, 142-149 (2015) · Zbl 1312.62122
[31] Amari, S., (Differential-Geometrical Methods in Statistics. Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics, vol. 28 (1985), Springer: Springer New York) · Zbl 0559.62001
[32] Corcuera, J. M.; Giummolè, F., A generalized bayes rule for prediction, Scand. J. Stat., 26, 265-279 (1999) · Zbl 0934.62027
[33] Jochen, V., An Introduction to Statistical Computing: A Simulation-Based Approach (2014), John Wiley & Sons, Ltd. · Zbl 1275.65001
[34] Fushiki, T.; Komaki, F.; Aihara, K., On parametric bootstrapping and Bayesian prediction, Scand. J. Stat., 31, 403-416 (2004) · Zbl 1065.62049
[35] Barndorff-Neilsen, O. E.; Cox, D. R., Inference and Asymptotics (1994), Chapman and Hall: Chapman and Hall London · Zbl 0826.62004
[36] Byar, D. P.; Green, S. B., The choice of treatment for cancer patients based on covariate information: application to prostate cancer, Bull. Cancer, 67, 477-488 (1980)
[37] Nelder, J. A.; Mead, R., A simplex algorithm for function minimization, Comput. J., 7, 308-313 (1965) · Zbl 0229.65053
[38] Belisle, C. J.P., Convergence theorems for a class of simulated annealing algorithms on Rd, J. Appl. Probab., 29, 885-895 (1992) · Zbl 0765.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.