×

Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques \((G^{\prime} / G)\)-expansion method and improved \((G^{\prime} / G)\)-expansion method. (English) Zbl 1400.35204

Summary: In the present paper, we construct the analytical exact solutions of a nonlinear evolution equation in mathematical physics; namely time fractional modified KdV equation by using (\(G^{\prime} / G\))-expansion method and improved (\(G^{\prime} / G\))-expansion method. As a result, new types of exact analytical solutions are obtained.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Yinping, L.; Zhibin, L., The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation, Chaos Solitons Fractals, 39, 1-8 (2009) · Zbl 1197.65166
[2] Debnath, L., Nonlinear Partial Differential Equations for Scintists and Engineers (2012), Birkhauser, Springer Verlog: Birkhauser, Springer Verlog New York · Zbl 1242.35001
[3] Debnath, L.; Bhatta, D., Integral Transforms and their Applications (2015), CRC and Chapman and Hall Press: CRC and Chapman and Hall Press Boca Raton, Florida, USA · Zbl 1310.44001
[4] Fan, E., Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics, Chaos Solitons Fractals, 16, 819-839 (2003) · Zbl 1030.35136
[5] Kaya, D., An application for the higher order modified KdV equation by decomposition method, Commun. Nonlinear Sci. Numer. Simul., 10, 693-702 (2005) · Zbl 1070.35061
[6] Miura, R. M.; Gardner, C. S.; Kruskal, M. D., KdV equation and generalizations. II. Existence of conservation laws and constant of motion, J. Math. Phys., 9, 1204-1209 (1968) · Zbl 0283.35019
[7] Gardner, C. S.; Green, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg deVries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1103.35360
[8] Ono, H., Soliton fission in an harmonic lattices with reflectionless inhomogeneity, J. Phys. Soc. Japan, 61, 4336-4343 (1992)
[9] Kakutani, T.; Ono, H., Weak non-linear hydromagnetic waves in a cold collision-free Plasma, J. Phys. Soc. Japan, 26, 1305-1318 (1969)
[10] Konno, K.; Ichikawa, Y. H., A modied Korteweg de Vries equation for ion acoustic waves, J. Phys. Soc. Japan, 37, 1631-1636 (1974)
[11] Nagatani, T., TDGL and mKdV equations for jamming transition in the lattice models of traffic, Physica A, 264, 581-592 (1999)
[12] Ziegler, V.; Dinkel, J.; Setzer, C.; Lonngren, K. E., On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line, Chaos Solitons Fractals, 12, 1719-1728 (2001) · Zbl 1022.35063
[13] Ablowitz, M. J.; Segur, H., Solitons and the Inverse Scattering Transform (1981), SIAM: SIAM Philadelphia · Zbl 0472.35002
[14] Wadati, M., The exact solution of the modified Korteweg-de Vries equation, J. Phys. Soc. Japan, 32, 1681-1689 (1972)
[15] Yan, Z., New Jacobian elliptic function solutions of modified KdV equation I, Commun. Theor. Phys., 38, 143-146 (2002) · Zbl 1267.35209
[16] Kevrekidis, P. G.; Khare, A.; Saxena, A., Breather lattice and its stabilization for the modified Korteweg-de Vries equation, Phys. Rev. E, 68, 047701-047705 (2003)
[17] Fu, Z.; Liu, S., New solutions to mKdV equation, Phys. Lett. A, 326, 364-374 (2004) · Zbl 1138.35393
[18] Wazwaz, A. M., Partial Differential Equations and Solitary Waves Theory (2009), Higher Education Press; Beijing and Springer-Verlag: Higher Education Press; Beijing and Springer-Verlag Berlin, Heidelberg · Zbl 1175.35001
[19] Watanabe, S., Ion acoustic soliton in plasma with negative ion, J. Phys. Soc. Japan, 53, 950-956 (1984)
[20] Johnpillai, A. G.; Khalique, C. M.; Biswas, A., Exact solutions of the mKdV equation with time-dependent coefficients, Math. Commun., 16, 509-518 (2011) · Zbl 1246.65190
[21] Yu, Y. X.; Wang, Q.; Zhang, H. Q., New explicit rational solitary wave solutions for discretized mKdV lattice equation, Commun. Theor. Phys., 44, 1011-1014 (2005), (Beijing, China)
[22] Mousavian, S. R.; Jafari, H.; Khalique, C. M.; Karimi, S. A., New exact-analytical solutions for the mKdV equation, J. Math. Comput. Sci., 2, 3, 413-416 (2011)
[23] Biswas, A., Solitary wave solution for the generalized KdV equation with time dependent damping and dispersion, Commun. Nonlinear Sci. Numer. Simul., 14, 3503-3506 (2009) · Zbl 1221.35306
[24] Vaganan, B. M.; Kumaran, M. S., Exact linearization and invariant solutions of the generalized Burger’s equation with linear damping and variable viscosity, Stud. Appl. Math., 117, 95-108 (2006) · Zbl 1145.35453
[25] Xiao-Yan, T.; Fei, H.; Sen-Yue, L., Variable coefficient KdV equation and the analytical diagnosis of a dipole blocking life cycle, Chinese Phys. Lett., 23, 887-890 (2006)
[26] Bulut, H.; Pandir, Y.; Demiray, S. T., Exact solutions of time-fractional KdV equations by using generalized kudryashov method, Int. J. Model. Optim., 4, 4, 315-320 (2014)
[27] Hirota, R., Exact solution of the modied Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Japan, 33, 1456-1458 (1972)
[28] Wadati, M., The modied Korteweg-de Vries equation, J. Phys. Soc. Japan, 34, 1289-1296 (1973) · Zbl 1334.35299
[29] Tanaka, S., Modied Korteweg-de Vries equation and scattering theory, Proc. Japan Acad., 48, 466-469 (1972) · Zbl 0253.35072
[30] Gesztesy, T.; Schweiger, W.; Simon, B., Commutation methods applied to the mKdV equation, Trans. Amer. Math. Soc., 324, 465-525 (1991) · Zbl 0728.35106
[31] Satsuma, J., A Wronskian representation of N-soliton solutions of nonlinear evolution equations, J. Phys. Soc. Japan, 46, 359-360 (1979)
[32] Saha Ray, S., Soliton solutions for time fractional coupled modified KdV equations using new coupled fractional reduced differential transform method, J. Math. Chem., 51, 2214-2229 (2013) · Zbl 1321.35205
[33] Bin, Z., \((G^\prime / G)\)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys., 58, 623-630 (2012) · Zbl 1264.35273
[34] Wang, G. W.; Liu, X. Q.; Zhang, Y., New explicit solutions of the generalized \((2 + 1)\)-dimensional Zakharov-Kuznetsov equation, Appl. Math., 3, 523-527 (2012)
[35] Akgül, A.; Kiliçman, A.; Inc, M., Improved \((G^\prime / G)\)-expansion method for the space and time fractional foam drainage and KdV equations, Abstr. Appl. Anal., 2013, 7 (2013), Article ID 414353 · Zbl 1293.35007
[36] Lanlan, X.; Huaitang, C., New \((G^\prime / G)\)-expansion method and its applications to nonlinear PDE, Phys. Rev. Res. Int., 3, 4, 407-415 (2013)
[37] Yang, X. J., Advanced Local Fractional Calculus and Its Applications (2012), World Science Publisher: World Science Publisher New York
[38] Yang, X. J., A short note on local fractional calculus of function of one variable, J. Appl. Lib. Inf. Sci., 1, 1, 1-13 (2012)
[39] Yang, X. J., The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems, Prespacetime J., 3, 9, 913-923 (2012)
[40] Hu, M. S.; Baleanu, D.; Yang, X. J., One-phase problems for discontinuous heat transfer in fractal media, Math. Probl. Eng., 2013, 3 (2013), 358473 · Zbl 1296.80006
[41] Bekir, A.; Güner, Ö.; Cevikel, A. C., Fractional complex transform and exp-function methods for fractional differential equations, Abstr. Appl. Anal., 2013, 8 (2013), Article ID 426462 · Zbl 1298.34008
[42] Su, W. H.; Yang, X. J.; Jafari, H.; Baleanu, D., Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator, Adv. Difference Equ., 2013, 97, 1-8 (2013) · Zbl 1380.35163
[43] Yang, X. J.; Baleanu, D.; Srivastava, H. M., Local Fractional Integral Transforms and their Applications (2015), Academic Press, Elsevier
[44] He, J. H.; Elagan, S. K.; Li, Z. B., Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus, Phys. Lett. A, 376, 4, 257-259 (2012) · Zbl 1255.26002
[45] Güner, O.; Bekir, A.; Cevikel, A. C., A variety of exact solutions for the time fractional Cahn-Allen equation, Eur. Phys. J. Plus, 130, 146 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.