×

From Heisenberg uniqueness pairs to properties of the Helmholtz and Laplace equations. (English) Zbl 1400.35046

Summary: The aim of this paper is to establish uniqueness properties of solutions of the Helmholtz and Laplace equations. In particular, we show that if two solutions of such equations on a domain of \(\mathbb{R}^d\) agree on two intersecting \(d - 1\)-dimensional submanifolds in generic position, then they agree everywhere.

MSC:

35B60 Continuation and prolongation of solutions to PDEs
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] Bers, L., Local behaviour of solution of general linear elliptic equations, Comm. Pure Appl. Math., 8, 473-496, (1955) · Zbl 0066.08101
[2] Cheng, S. Y., Eigenfunctions and nodal sets, Comment. Math. Helv., 51, 43-55, (1976) · Zbl 0334.35022
[3] Dai, F.; Xu, Y., Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, (2013) · Zbl 1275.42001
[4] Diaz, J. B.; Ludford, G. S.S., Reflection principles for linear elliptic second order partial differential equations with constant coefficients, Ann. Mat. Pura Appl., 39, 39-87, (1955) · Zbl 0067.32603
[5] Ebenfelt, P.; Khavinson, D., On point to point reflection of harmonic functions across real-analytic hypersurfaces in \(\mathbb{R}^n\), J. Anal. Math., 68, 145-182, (1996) · Zbl 0856.31001
[6] Fernández-Bertolin, A.; Gröchenig, K.; Jaming, Ph., Determining point distributions from their projections, (2017 International Conference on Sampling Theory and Applications, SampTA 2017, (2017)), 164-168
[7] Giri, D. K.; Srivastava, R. K., Heisenberg uniqueness pairs for some algebraic curves in the plane, Adv. Math., 310, 993-1016, (2017) · Zbl 1366.42002
[8] Gröchenig, K.; Jaming, Ph., The cramer-Wold theorem on quadratic surfaces and Heisenberg uniqueness pairs, J. Inst. Math. Jussieu, (2018), in press
[9] Hedenmalm, H.; Montes-Rodríguez, A., Heisenberg uniqueness pairs and the Klein-Gordon equation, Ann. of Math. (2), 173, 1507-1527, (2011) · Zbl 1227.42002
[10] Jaming, Ph.; Kellay, K., A dynamical system approach to Heisenberg uniqueness pairs, J. Anal. Math., 134, 273-301, (2018) · Zbl 1398.42006
[11] Lev, N., Uniqueness theorems for Fourier transforms, Bull. Sci. Math., 135, 134-140, (2011) · Zbl 1210.42018
[12] Morse, P. M.; Feshbach, H., Methods of theoretical physics, (1953), McGraw-Hill Book Co., Inc. New York-Toronto-London, 2 volumes · Zbl 0051.40603
[13] Savina, T., On non-local reflection for elliptic equations of the second order in \(\mathbb{R}^2\) (the Dirichlet condition), Trans. Amer. Math. Soc., 364, 2443-2460, (2012) · Zbl 1246.31002
[14] Sjölin, P., Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin, Bull. Sci. Math., 135, 125-133, (2011) · Zbl 1210.42022
[15] Sjölin, P., Heisenberg uniqueness pairs for the parabola, J. Fourier Anal. Appl., 19, 410-416, (2013) · Zbl 1311.42022
[16] Stein, E. M.; Weiss, G., Introduction to Fourier analysis on Euclidean spaces, (1971), Princeton University Press · Zbl 0232.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.