×

Equivalence between limit theorems for lattice group-valued \(k\)-triangular set functions. (English) Zbl 1400.28004

Summary: We investigate some of the main properties of lattice group-valued \(k\)-triangular set functions and we prove some Brooks-Jewett, Nikodým, Vitali-Hahn-Saks and Schur-type theorems and their equivalence. A Drewnowski-type theorem on existence of continuous restrictions of (\(s\))-bounded set functions is given.

MSC:

28A12 Contents, measures, outer measures, capacities
26E50 Fuzzy real analysis
28A33 Spaces of measures, convergence of measures
28B10 Group- or semigroup-valued set functions, measures and integrals
28B15 Set functions, measures and integrals with values in ordered spaces
46G10 Vector-valued measures and integration

References:

[1] Aviles Lopez, A; Cascales Salinas, B; Kadets, V; Leonov, A, The Schur \(l_1\) theorem for filters, J. Math. Phys., Anal. Geom., 3, 383-398, (2007) · Zbl 1259.46017
[2] Ban, A.I.: Intuitionistic fuzzy sets: theory and applications. Nova Science Publ. Inc, New York (2006) · Zbl 1134.28001
[3] Boccuto, A, Egorov property and weak \(σ \)-distributivity in Riesz spaces, Acta Math. (Nitra), 6, 61-66, (2003)
[4] Boccuto, A; Candeloro, D, Uniform \((s)\)-boundedness and convergence results for measures with values in complete \((ℓ )\)-groups, J. Math. Anal. Appl., 265, 170-194, (2002) · Zbl 1006.28012 · doi:10.1006/jmaa.2001.7715
[5] Boccuto, A; Candeloro, D, Convergence and decompositions for \((ℓ )\)-group-valued set functions, Comment. Math., 44, 11-37, (2004) · Zbl 1057.28005
[6] Boccuto, A; Candeloro, D; Sambucini, AR, \(L^p\) spaces in vector lattices and applications, Math. Slovaca, 67, 1409-1426, (2017) · Zbl 1505.28018 · doi:10.1515/ms-2017-0060
[7] Boccuto, A; Dimitriou, X, Ideal limit theorems and their equivalence in \((ℓ )\)-group setting, J. Math. Res., 5, 43-60, (2013) · doi:10.5539/jmr.v5n2p42
[8] Boccuto, A; Dimitriou, X, Limit theorems for \(k\)-subadditive lattice group-valued capacities in the filter convergence setting, Tatra Mt. Math. Publ., 65, 1-21, (2016) · Zbl 1487.28003
[9] Boccuto, A., Dimitriou, X.: Convergence theorems for Lattice group-valued measures. Bentham Science Publ, U. A. E (2015) · Zbl 1342.28001 · doi:10.2174/97816810800931150101
[10] Boccuto, A; Dimitriou, X, Matrix theorems and interchange for lattice group-valued series in the filter convergence setting, 2015, Bull. Hellenic Math. Soc., 59, 39-55, (2016) · Zbl 1487.28003
[11] Boccuto, A., Dimitriou, X.: Limit theorems for lattice group-valued \(k\)-triangular set functions. In: Proceedings of the 33rd PanHellenic Conference on Mathematical Education, Chania, Greece, 4-6 November 2016. pp. 1-10 (2016) · Zbl 1487.28003
[12] Boccuto, A; Dimitriou, X, Schur-type theorems for \(k\)-triangular lattice group-valued set functions with respect to filter convergence, Appl. Math. Sci., 11, 2825-2833, (2017)
[13] Boccuto, A., Dimitriou, X.: Non-additive lattice group-valued set functions and limit theorems. Lambert Acad. Publ., (2017). ISBN: 978-613-4-91335-5
[14] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Countably additive restrictions and limit theorems in \((ℓ )\)-groups. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 57, 121-134 (2010); Addendum to: “Countably additive restrictions and limit theorems in \((ℓ )\)-groups”, ibidem 58, 3-10 (2011) · Zbl 1225.26022
[15] Boccuto, A; Dimitriou, X; Papanastassiou, N, Brooks-jewett-type theorems for the pointwise ideal convergence of measures with values in \((ℓ )\)-groups, Tatra Mt. Math. Publ., 49, 17-26, (2011) · Zbl 1265.26035
[16] Boccuto, A; Dimitriou, X; Papanastassiou, N, Schur lemma and limit theorems in lattice groups with respect to filters, Math. Slovaca, 62, 1145-1166, (2012) · Zbl 1274.28027 · doi:10.2478/s12175-012-0070-5
[17] Boccuto, A., Riečan ,B., Sambucini, A. R.: On the product of \(M\)-measures in \((ℓ )\)-groups. Aust. J. Math. Anal. Appl. 7(1) Paper N. 9, 8 p (2010) · Zbl 1187.28020
[18] Boccuto, A., Riečan, B., Vrábelová, M.: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Science Publ, U. A. E (2009)
[19] Candeloro, D, On the vitali-Hahn-Saks, Dieudonné and nikodým theorems (Italian), Rend. Circ. Mat. Palermo Ser., II, 439-445, (1985) · Zbl 0624.28005
[20] Candeloro, D; Letta, G, On vitali-Hahn-Saks and Dieudonné theorems (Italian), rend, Accad. Naz. Sci. XL Mem. Mat., 9, 203-213, (1985) · Zbl 0584.28003
[21] Candeloro, D; Sambucini, AR, Filter convergence and decompositions for vector lattice-valued measures, Mediterranean J. Math., 12, 621-637, (2015) · Zbl 1320.28020 · doi:10.1007/s00009-014-0431-0
[22] Dobrakov, I, On submeasures I, Dissertationes Math., 112, 5-35, (1974) · Zbl 0292.28001
[23] Drewnowski, L, Equivalence of brooks-jewett, vitali-Hahn-Saks and Nikodym theorems, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 20, 725-731, (1972) · Zbl 0243.28011
[24] Fremlin, DH, A direct proof of the matthes-wright integral extension theorem, J. Lond. Math. Soc., 11, 276-284, (1975) · Zbl 0313.06016 · doi:10.1112/jlms/s2-11.3.276
[25] Guariglia, E, \(k\)-triangular functions on an orthomodular lattice and the brooks-jewett theorem, Radovi Mat., 6, 241-251, (1990) · Zbl 0763.28006
[26] Pap, E, The vitali-Hahn-Saks theorems for \(k\)-triangular set functions, Atti Sem. Mat. Fis. Univ. Modena, 35, 21-32, (1987) · Zbl 0626.28001
[27] Pap, E.: Null-Additive Set Functions. Kluwer Acad. Publishers/Ister Science, Bratislava (1995) · Zbl 0856.28001
[28] Riečan, B., Neubrunn, T.: Integral, Measure and Ordering. Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava (1997) · Zbl 0916.28001
[29] Saeki, S, The vitali-Hahn-Saks theorem and measuroids, Proc. Am. Math. Soc., 114, 775-782, (1992) · Zbl 0747.28001 · doi:10.1090/S0002-9939-1992-1088446-8
[30] Schachermayer, W, On some classical measure-theoretic theorems for non-sigma-complete Boolean algebras, Dissertationes Math., 214, 1-33, (1982) · Zbl 0522.28007
[31] Ventriglia, F, Cafiero theorem for \(k\)-triangular functions on an orthomodular lattice, Rend. Accad. Sci. Fis. Mat. Napoli, 75, 45-52, (2008) · Zbl 1211.06002
[32] Wang, Z., Klir, G.J.: Generalized Measure theory. Springer, Berlin (2009) · Zbl 1184.28002 · doi:10.1007/978-0-387-76852-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.