×

Constructing groups of ‘small’ order: recent results and open problems. (English) Zbl 1400.20014

Böckle, Gebhard (ed.) et al., Algorithmic and experimental methods in algebra, geometry, and number theory. Cham: Springer (ISBN 978-3-319-70565-1/hbk; 978-3-319-70566-8/ebook). 199-211 (2017).
Summary: We investigate the state of the art in the computational determination and enumeration of the groups of small order. This includes a survey of the available algorithms and a discussion of their recent improvements. We then show how these algorithms can be used to determine or enumerate the groups of order at most 20, 000 with few exceptions and we discuss the orders in this range which remain as challenging open problems.
For the entire collection see [Zbl 1394.14002].

MSC:

20D60 Arithmetic and combinatorial problems involving abstract finite groups
20D45 Automorphisms of abstract finite groups
20E22 Extensions, wreath products, and other compositions of groups
20-04 Software, source code, etc. for problems pertaining to group theory
20-03 History of group theory
01A65 Development of contemporary mathematics
Full Text: DOI

References:

[1] C. Archer, The extension problem and classification of nonsolvable groups. PhD Thesis, Université Libre de Bruxelles, 1998
[2] H.U. Besche, B. Eick, Construction of finite groups. J. Symb. Comput. 27, 387-404 (1999) · Zbl 0922.20001 · doi:10.1006/jsco.1998.0258
[3] H.U. Besche, B. Eick, GrpConst - Construction of finite groups (1999). A refereed GAP 4 package, see [29] · Zbl 0922.20001
[4] H.U. Besche, B. Eick, The groups of order \(q\)\^{}{\(n\)} ⋅ \(p\). Commun. Algebra 29(4), 1759-1772 (2001) · Zbl 1056.20016
[5] H.U. Besche, B. Eick, E.A. O’Brien, The groups of order at most 2000. Electron. Res. Announc. Am. Math. Soc. 7, 1-4 (2001) · Zbl 0986.20024 · doi:10.1090/S1079-6762-01-00087-7
[6] H.U. Besche, B. Eick, E.A. O’Brien, A millennium project: constructing small groups. Int. J. Algebra Comput. 12, 623-644 (2002) · Zbl 1020.20013 · doi:10.1142/S0218196702001115
[7] H.U. Besche, B. Eick, E. O’Brien, SmallGroups - a library of groups of small order (2005). A GAP 4 package; Webpage available at www.icm.tu-bs.de/ag_algebra/software/small/small.html
[8] S. Blackburn, P. Neumann, G. Venkataraman, \(Enumeration of Finite Groups\) (Cambridge University Press, Cambridge, 2007) · Zbl 1141.20001 · doi:10.1017/CBO9780511542756
[9] J.J. Cannon, D.F. Holt, Automorphism group computation and isomorphism testing in finite groups. J. Symb. Comput. 35, 241-267 (2003) · Zbl 1032.20016 · doi:10.1016/S0747-7171(02)00133-5
[10] A. Cayley, On the theory of groups, as depending on the symbolic equation \(θ\)\^{}{\(n\)} = 1. Philos. Mag. 4(7), 40-47 (1854) · doi:10.1080/14786445408647421
[11] J. Conway, H. Dietrich, E. O’Brien, Counting groups: Gnus, Moas and other exotica. Math. Intell. 30, 6-15 (2008) · Zbl 1213.05011 · doi:10.1007/BF02985731
[12] B. Eick, M. Horn, The construction of finite solvable groups revisited. J. Algebra 408, 166-182 (2014) · Zbl 1311.20016 · doi:10.1016/j.jalgebra.2013.09.028
[13] B. Eick, E.A. O’Brien, Enumerating \(p\)-groups. J. Aust. Math. Soc. 67, 191-205 (1999) · Zbl 0979.20021 · doi:10.1017/S1446788700001166
[14] B. Eick, E. O’Brien, AutPGrp - computing the automorphism group of a \(p\) -group, Version 1.8 (2016). A refereed GAP 4 package, see [29]
[15] B. Eick, C.R. Leedham-Green, E.A. O’Brien, Constructing automorphism groups of \(p\)-groups. Commun. Algebra 30, 2271-2295 (2002) · Zbl 1006.20001 · doi:10.1081/AGB-120003468
[16] D. Holt, W. Plesken, \(Perfect Groups\) (Clarendon Press, Oxford, 1989) · Zbl 0691.20001
[17] M. Horn, B. Eick, GroupExt - Constructing finite groups (2013). A GAP 4 package, see [29]
[18] M.F. Newman, E.A. O’Brien, M.R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime. J. Algebra 278, 383-401 (2003) · Zbl 1072.20022 · doi:10.1016/j.jalgebra.2003.11.012
[19] E.A. O’Brien, The groups of order dividing 256. PhD thesis, Australian National University, Canberra, 1988
[20] E. O’Brien, ANUPQ - the ANU p-Quotient algorithm (1990). Also available in Magma and as GAP package
[21] E.A. O’Brien, The \(p\)-group generation algorithm. J. Symb. Comput. 9, 677-698 (1990) · Zbl 0736.20001 · doi:10.1016/S0747-7171(08)80082-X
[22] E.A. O’Brien, M.R. Vaughan-Lee, The groups with order \(p\)\^{}{7} for odd prime \(p\). J. Algebra 292(1), 243-258 (2005) · Zbl 1108.20016
[23] L. Pyber, Group enumeration and where it leads us, in \(European Congress of Mathematics, Volume II (Budapest, 1996)\), Progress in Mathematics, vol. 169 (Birkhäuser, Basel, 1998), pp. 187-199 · Zbl 0912.20001
[24] R. Schwingel, Two matrix group algorithms with applications to computing the automorphism group of a finite \(p\)-group. PhD Thesis, QMW, University of London, 2000
[25] J.K. Senior, A.C. Lunn, Determination of the groups of orders 101-161, omitting order 128. Am. J. Math. 56(1-4), 328-338 (1934) · JFM 60.0087.02 · doi:10.2307/2370937
[26] J.K. Senior, A.C. Lunn, Determination of the groups of orders 162-215 omitting order 192. Am. J. Math. 57(2), 254-260 (1935) · JFM 61.0096.06 · doi:10.2307/2371201
[27] M.J. Smith, Computing automorphisms of finite soluble groups. PhD thesis, Australian National University, Canberra, 1995
[28] D. Taunt, Remarks on the isomorphism problem in theories of construction of finite groups. Proc. Camb. Philos. Soc. 51, 16-24 (1955) · Zbl 0064.02401 · doi:10.1017/S030500410002987X
[29] The GAP Group, GAP - groups, algorithms and programming, Version 4.4. Available from http://www.gap-system.org (2005)
[30] M. Vaughan-Lee, B. Eick, SglPPow - Database of certain p-groups (2016). A GAP 4 package, see [29]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.