×

Automorphism groups of circulant digraphs with applications to semigroup theory. (English) Zbl 1399.05099

Summary: We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20M20 Semigroups of transformations, relations, partitions, etc.
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
05C20 Directed graphs (digraphs), tournaments

References:

[1] M. E. Adams, S. Bulman-Fleming and M. Gould: Endomorphism properties of algebraic structures, in: Proceedings of the Tennessee Topology Conference (Nashville, TN, 1996), 1–17, World Sci. Publishing, River Edge, NJ, 1997. · Zbl 0913.08003
[2] R. Akhtar, T. Jackson-Henderson, R. Karpman, M. Boggess, I. Jiménez, A. Kinzel and D. Pritikin: On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16 (2009), no. 1, Research Paper 117, 13. · Zbl 1230.05149
[3] B. Alspach and T. D. Parsons: Isomorphism of circulant graphs and · Zbl 0402.05038 · doi:10.1016/0012-365X(79)90011-6
[4] J. Araújo, E. Dobson and J. Konieczny: Automorphisms of endomorphism semigroups of re exiv · Zbl 1208.20055
[5] J. Araújo, V. H. Fernandes, M. Jesus, V. Maltcev and J. D. Mitchell: Automorphisms of partial endomorphism semigroups, Publicationes Mathematicae Debrecen 79 (1–2) (2011), 23–39. · Zbl 1235.20055 · doi:10.5486/PMD.2011.4703
[6] J. Araújo and M. Kinyon: Inverse semigroups with idempotent-fixing automo · Zbl 1307.20054 · doi:10.1007/s00233-014-9585-0
[7] J. Araújo and J. Konieczny: Dense relations are determined by their endomorphism · Zbl 1069.20059 · doi:10.1007/s00233-004-0164-7
[8] J. Araújo and J. Konieczny: Automorphism groups of centralizers of · Zbl 1037.20062 · doi:10.1016/S0021-8693(03)00499-X
[9] J. Araújo and J. Konieczny: Automorphisms of the endomorphism monoids of relatively free bands, Proc. Edinb. Math. Soc. (2) 50 (2007), 1–21. · Zbl 1123.20048 · doi:10.1017/S0013091505000672
[10] J. Araújo and J. Konieczny: A method of finding automorphism groups of endomorphism monoids of relational systems, Discrete Math. 307(13), (2007), 1609–1620. · Zbl 1123.20054 · doi:10.1016/j.disc.2006.09.029
[11] J. Araújo and J. Konieczny: Automorphisms of endomorphism monoids of 1simple free · Zbl 1168.08001 · doi:10.1080/00927870802241204
[12] J. Araújo and J. Konieczny: General theorems on automorphisms of semigroups and their applications, Journal of the Austral · Zbl 1194.20059 · doi:10.1017/S1446788709000019
[13] L. Babai: Isomorphism problem for a class of point-symmetric structures, Acta · Zbl 0378.05035 · doi:10.1007/BF01895854
[14] S. Bhoumik, E. Dobson and J. Morris: Asymptotic automorphism groups of circulant graphs and digra · Zbl 1323.05063
[15] P. J. Cameron, M. Giudici, G. A. Jones, W. M. Kantor, M. H. Klin, D. Marušič and L. A. Nowitz: Transitive permutation groups without semiregular subgroups, J. London Math. Soc. (2) 66 (2002), 325–333. · Zbl 1015.20001 · doi:10.1112/S0024610702003484
[16] J. D. Dixon and B. Mortimer: Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. · Zbl 0951.20001
[17] E. Dobson and J. Morris: Toida’s conjecture is tr · Zbl 1003.05052
[18] E. Dobson and J. Morris: On automorphism groups of circulant digraphs of squarefr · Zbl 1073.05034 · doi:10.1016/j.disc.2004.03.018
[19] E. Dobson and J. Morris: Automorphism groups of wreath product digraphs, Electron. J. Combin. 16 (2009), Research Paper 17. · Zbl 1178.05050
[20] S. A. Evdokimov and I. N. Ponomarenko: Characterization of cyclotomic schemes and normal Schur rings over a cyclic group, · Zbl 1056.20001
[21] W. Klotz and T. Sander: Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007), Research Paper 45 (electronic). · Zbl 1121.05059
[22] L. M. Gluskín: Semi-groups of isotone transformations Uspehi Mat. Nauk 16 (1961), 157–162, (Russian).
[23] K. H. Leung and S. H. Man: On Schur rings over cycl · Zbl 0860.20005 · doi:10.1006/jabr.1996.0220
[24] K. H. Leung and S. H. Man: On Schur rings over cyclic · Zbl 0962.20002 · doi:10.1007/BF02773471
[25] I. Levi: Automorphisms of normal transformation semigroups, Proc. Edinburgh Math. Soc. (2) 28 (1985), 185–205. · Zbl 0554.20021 · doi:10.1017/S001309150002263X
[26] I. Levi: Automorphisms of normal partial transformation semi · Zbl 0624.20045 · doi:10.1017/S0017089500006790
[27] I. Levi: On the inner automorphisms of finite transformation semigroups, Proc. Edinburgh Math. Soc. (2) 39 (1996), 27–30. · Zbl 0853.20044 · doi:10.1017/S0013091500022732
[28] C. H. Li: On isomorphisms of connected Cayle · Zbl 0886.05078 · doi:10.1016/S0012-365X(97)81821-3
[29] C. H. Li: Permutation groups with a cyclic regular subgroup and arc transitive circulan · Zbl 1102.20002 · doi:10.1007/s10801-005-6903-3
[30] A. E. Liber: On symmetric generalized gr
[31] K. D. Magill: Semigroup structures for families of functions, I. Some homomorphism theorems · Zbl 0148.01502 · doi:10.1017/S1446788700005115
[32] A. I. Mal’cev: Symmetric group
[33] G. Mashevitzky, B. M. Schein and G. I. Zhitomirski: Automorphisms of the endomorphism semigroup of a free inver · Zbl 1119.20056 · doi:10.1080/00927870600850610
[34] J. D. P. Meldrum: ’Wreath products of groups and semigroups,” Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 74, Longman, Harlow, 1995. · Zbl 0833.20001
[35] M. Muzychuk, M. Klin and R. Pöschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and association schemes (Piscataway, NJ, 1999), 241–264, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Amer. Math. Soc., Providence, RI, 2001. · Zbl 0979.05079
[36] J. Schreier: Über Abbildungen einer abstrakten Menge Auf ihre · JFM 63.0073.02
[37] R. P. Sullivan: Automorphisms of transformation semigroups, J. Australian Math. Soc. 20 (1975), part 1, 77–84. · Zbl 0318.20042 · doi:10.1017/S144678870002396X
[38] È. G. šutov: Homomorphisms of the semigroup of all partial transformations, Izv. Vysš. U
[39] J. S. V. Symons: Normal transformation semigroups, J. Au · doi:10.1017/S1446788700016232
[40] W. T. Tutte: A family of cubical graphs, Proc · doi:10.1017/S0305004100023720
[41] Ju. M. Važenin: The elementary definability and elementary characterizability of classes of re exive graphs, Izv.
[42] H. Wielandt: Permutation groups through invariant relations and invariant functions, lectures given at The Ohio State University, Columbus, Ohio, 1969.
[43] H. Wielandt:’ Mathematische Werke/Mathematical works. Vol. 1,” Walter de Gruyter & Co., Berlin, 1994. · Zbl 0802.20001
[44] M. Y. Xu: Automorphism groups and isomorphisms of Cayley · Zbl 0887.05025 · doi:10.1016/S0012-365X(97)00152-0
[45] H. Yang and X. Yang: Automorphisms of partition order-decreasing transformation · Zbl 1266.20077 · doi:10.1007/s00233-012-9430-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.