×

Task-space tracking control of multi-robot systems with disturbances and uncertainties rejection capability. (English) Zbl 1398.93254

Summary: This paper investigates the task-space tracking control problem for multi-robot systems in the presence of uncertain kinematics and dynamics. Two classes of control schemes are developed to address the aforementioned problem with nonredundant and redundant kinematics and input disturbances. Particularly, the property of separating of kinematic and dynamic loops is obtained by the proposed controllers, which include a control law, a kinematic parameter adaptive law and a dynamic parameter adaptive law, respectively. Moreover, by using passivity approaches, the system is proved to be passive with the external forces, applied on the end effectors, be the input signals. Consequently, the tracking errors asymptotically converge to the origin under interaction constraints, i.e., the graph is directed, and only a subset of slave robots can access the information of the master robot. Finally, numerous simulations are performed to demonstrate the validity of the theoretical results.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93C73 Perturbations in control/observation systems
Full Text: DOI

References:

[1] Chang, X; Yang, G, Nonfragile \( H_{∞ } \) filtering of continuous-time fuzzy systems, IEEE Trans. Signal Process., 59, 1528-1538, (2011) · Zbl 1391.93134 · doi:10.1109/TSP.2010.2103068
[2] Liu, Y; Guo, B; Park, JH; Lee, SM, Event-based reliable dissipative filtering for \(\text{T}{-}\text{ S }\) fuzzy systems with asynchronous constraints, IEEE Trans. Fuzzy Syst., (2017) · doi:10.1109/TFUZZ.2017.2762633
[3] Mushage, BO; Chedjou, JC; Kyamakya, K, Fuzzy neural network and observer-based fault-tolerant adaptive nonlinear control of uncertain 5-DOF upper-limb exoskeleton robot for passive rehabilitation, Nonlinear Dyn., 87, 2021-2037, (2017) · Zbl 1384.93094 · doi:10.1007/s11071-016-3173-7
[4] Wang, H, Consensus of networked mechanical systems with communication delays: a unified framework, IEEE Trans. Autom. Control, 59, 1571-1576, (2014) · Zbl 1360.93058 · doi:10.1109/TAC.2013.2293413
[5] Liu, Y; Chopra, N, Controlled synchronization of heterogeneous robotic manipulators in the task space, IEEE Trans. Robot., 28, 268-275, (2012) · doi:10.1109/TRO.2011.2168690
[6] Meng, Z; Dimarogonas, DV; Johansson, KH, Leader-follower coordinated tracking of multiple heterogeneous Lagrange systems using continuous control, IEEE Trans. Robot., 30, 739-745, (2014) · doi:10.1109/TRO.2013.2294060
[7] Cheah, CC; Hirano, M; Kawamura, S; Arimoto, S, Approximate Jacobian control for robots with uncertain kinematics and dynamics, IEEE Trans. Robot. Autom., 19, 692-702, (2003) · doi:10.1109/TRA.2003.814517
[8] Cheah, CC; Liu, C; Slotine, J-JE, Adaptive tracking control for robots with unknown kinematic and dynamic properties, Int. J. Robot. Res., 25, 283-296, (2006) · Zbl 1366.93399 · doi:10.1177/0278364906063830
[9] Liu, Y; Khong, MH, Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics, IEEE/ASME Trans. Mechatron., 20, 2550-2562, (2015) · doi:10.1109/TMECH.2015.2388555
[10] Xiao, B; Yin, S; Kaynak, O, Tracking control of robotic manipulators with uncertain kinematics and dynamics, IEEE Trans. Ind. Electron., 63, 6439-6449, (2016) · doi:10.1109/TIE.2016.2569068
[11] Wang, H, Adaptive control of robot manipulators with uncertain kinematics and dynamics, IEEE Trans. Autom. Control, 62, 948-954, (2017) · Zbl 1364.93524 · doi:10.1109/TAC.2016.2575827
[12] Pearce, DJG; Miller, AM; Rowlands, G; Turnera, MS, Role of projection in the control of bird flocks, Proc. Natl. Acad. Sci., 111, 10422-10426, (2014) · doi:10.1073/pnas.1402202111
[13] Hinz, RC; Polavieja, GG, Ontogeny of collective behavior reveals a simple attraction rule, Proc. Natl. Acad. Sci., 114, 2295-2300, (2017) · doi:10.1073/pnas.1616926114
[14] Chang, X; Yang, G, New results on output feedback \(H_{∞ }\) control for linear discrete-time systems, IEEE Trans. Autom. Control, 59, 1355-1359, (2014) · Zbl 1360.93383 · doi:10.1109/TAC.2013.2289706
[15] Li, X; Su, H; Chen, MZQ, Flocking of networked Euler-Lagrange systems with uncertain parameters and time-delays under directed graphs, Nonlinear Dyn., 85, 415-424, (2016) · Zbl 1349.93158 · doi:10.1007/s11071-016-2695-3
[16] Dong, X; Hu, G, Time-varying formation tracking for linear multi-agent systems with multiple leaders, IEEE Trans. Autom. Control, 62, 3658-3664, (2017) · Zbl 1370.93011 · doi:10.1109/TAC.2017.2673411
[17] Wen, G; Zhao, Y; Duan, Z; Yu, W; Chen, G, Containment of higher-order multi-leader multi-agent systems: a dynamic output approach, IEEE Trans. Autom. Control, 61, 1135-1140, (2016) · Zbl 1359.93178 · doi:10.1109/TAC.2015.2465071
[18] Li, Z; Chen, J, Robust consensus of linear feedback protocols over uncertain network graphs, IEEE Trans. Autom. Control, 62, 4251-4258, (2017) · Zbl 1373.93021 · doi:10.1109/TAC.2017.2685082
[19] Jin, X; Zhao, Z; He, Y, Insensitive leader-following consensus for a class of uncertain multi-agent systems against actuator faults, Neurocomputing, 272, 189-196, (2018) · doi:10.1016/j.neucom.2017.06.072
[20] Qian, S; Zi, B; Ding, H, Dynamics and trajectory tracking control of cooperative multiple mobile cranes, Nonlinear Dyn., 83, 89-108, (2016) · Zbl 1349.93293 · doi:10.1007/s11071-015-2313-9
[21] Ge, M; Guan, Z; Hu, B; He, D; Liao, R, Distributed controller-estimator for target tracking of networked robotic systems under sampled interaction, Automatica, 69, 410-417, (2016) · Zbl 1338.93247 · doi:10.1016/j.automatica.2016.03.008
[22] Wang, L; Zeng, Z; Hu, J; Wang, X, Controller design for global fixed-time synchronization of delayed neural networks with discontinuous activations, Neural Netw., 87, 122-131, (2017) · Zbl 1440.93101 · doi:10.1016/j.neunet.2016.12.006
[23] Jin, X; Wang, S; Yang, G; Ye, D, Robust adaptive hierarchical insensitive tracking control of a class of leader-follower agents, Inf. Sci., 406-407, 234-247, (2016) · Zbl 1432.93076
[24] Liu, Y; Guo, B; Park, JH; Lee, SM, Nonfragile exponential synchronization of delayed complex dynamical networks with memory sampled-data control, IEEE Trans. Neural Netw. Learn. Syst., (2016) · doi:10.1109/TNNLS.2016.2614709
[25] Zhang, B; Jia, Y; Matsuno, F; Endo, T, Task-space synchronization of networked mechanical systems with uncertain parameters and communication delays, IEEE Trans. Cybern., 47, 2288-2298, (2017) · doi:10.1109/TCYB.2016.2597446
[26] Wang, H, Task-space synchronization of networked robotic systems with uncertain kinematics and dynamics, IEEE Trans. Autom. Control, 58, 3169-3174, (2013) · Zbl 1369.93424 · doi:10.1109/TAC.2013.2254001
[27] Liang, X; Wang, H; Liu, Y; Chen, W; Hu, G; Zhao, J, Adaptive task-space cooperative tracking control of networked robotic manipulators without task-space velocity measurements, IEEE Trans. Cybern., 46, 2386-2398, (2016) · doi:10.1109/TCYB.2015.2477606
[28] Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)
[29] Liu, Z; Guan, Z; Shen, X; Feng, G, Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements, IEEE Trans. Autom. Control, 57, 2639-2643, (2012) · Zbl 1369.93035 · doi:10.1109/TAC.2012.2214451
[30] Liu, Z; Yu, X; Guan, Z; Hu, B; Li, C, Pulse-modulated intermittent control in consensus of multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 47, 783-793, (2017) · doi:10.1109/TSMC.2016.2524063
[31] Wang, Y; Yang, W; Xiao, J; Zeng, Z, Impulsive multisynchronization of coupled multistable neural networks with time-varying delay, IEEE Trans. Neural Netw. Learn. Syst., 28, 1560-1571, (2017) · doi:10.1109/TNNLS.2016.2544788
[32] Khalil, H.K., Grizzle, J.W.: Nonlinear Systems. Prentice-Hall, Englewood Cliffs (1996)
[33] Lozano, R., Brogliato, B., Egeland, O., Maschke, B.: Dissipative Systems Analysis and Control: Theory and Applications. Springer, London (2000) · Zbl 0958.93002 · doi:10.1007/978-1-4471-3668-2
[34] Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2012) · Zbl 1268.65037
[35] Cao, Y; Ren, W; Meng, Z, Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking, Syst. Control Lett., 59, 522-529, (2010) · Zbl 1207.93103 · doi:10.1016/j.sysconle.2010.06.002
[36] Lai, X; Wang, Y; Wu, M; Cao, W, Stable control strategy for planar three-link underactuated mechanical system, IEEE/ASME Trans. Mechatron., 21, 1345-1356, (2016) · doi:10.1109/TMECH.2016.2519529
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.