×

Sequential shortest path interdiction with incomplete information. (English) Zbl 1398.91165

Summary: We study sequential interdiction when the interdictor has incomplete initial information about the network and the evader has complete knowledge of the network, including its structure and arc costs. In each time period, the interdictor blocks at most \(k\) arcs from the network observed up to that period, after which the evader travels along a shortest path between two (fixed) nodes in the interdicted network. By observing the evader’s actions, the interdictor learns about the network structure and arc costs and adjusts its actions to maximize the cumulative cost incurred by the evader. A salient feature of our work is that the feedback in each period is deterministic and adversarial. In addition to studying the regret minimization problem, we also discuss time stability of a policy, which is the number of time periods until the interdictor’s actions match those of an oracle interdictor with prior knowledge of the network. We propose a class of simple interdiction policies that have a finite regret and detect when the instantaneous regret reaches zero in real time. More importantly, we establish that this class of policies belongs to the set of efficient policies.

MSC:

91B06 Decision theory
91-04 Software, source code, etc. for problems pertaining to game theory, economics, and finance
Full Text: DOI

References:

[1] Ahuja R, Magnanti T, Orlin J (1993) Network Flows: Theory, Algorithms, and Applications (Prentice-Hall, Englewood Cliffs, NJ). · Zbl 1201.90001
[2] Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Machine Learn. 47(2-3):235-256. · Zbl 1012.68093 · doi:10.1023/A:1013689704352
[3] Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (2003) The non-stochastic multi-armed bandit problem. SIAM J. Comput. 32(1):48-77. · Zbl 1029.68087 · doi:10.1137/S0097539701398375
[4] Awerbuch B, Kleinberg RD (2004) Adaptive routing with end-to-end feedback: Distributed learning and geometric approaches. Babai L, ed. Proc. Thirty-Sixth Ann. ACM Sympos. Theory Comput. STOC ’04 (ACM, New York), 45-53. · Zbl 1192.68020 · doi:10.1145/1007352.1007367
[5] Ball M, Golden B, Vohra R (1989) Finding the most vital arcs in a network. Oper. Res. Lett. 8(2):73-76. · Zbl 0679.90086 · doi:10.1016/0167-6377(89)90003-5
[6] Bayrak H, Bailey M (2008) Shortest path network interdiction with asymmetric information. Networks 52(3):133-140. · Zbl 1171.90345 · doi:10.1002/net.20236
[7] Beheshti B, Özaltın OY, Zare MH, Prokopyev OA (2015) Exact solution approach for a class of nonlinear bilevel knapsack problems. J. Global Optim. 61(2):291-310. · Zbl 1319.90053 · doi:10.1007/s10898-014-0189-8
[8] Brown G, Carlyle M, Salmerón J, Wood R (2006) Defending critical infrastructure. Interfaces 36(6):530-544.
[9] Cesa-Bianchi N, Lugosi G (2006) Prediction, Learning, and Games (Cambridge University Press, Cambridge, UK). · Zbl 1114.91001 · doi:10.1017/CBO9780511546921
[10] Cesa-Bianchi N, Lugosi G (2012) Combinatorial bandits. J. Comput. System Sci. 78(5):1404-1422. · Zbl 1262.91052 · doi:10.1016/j.jcss.2012.01.001
[11] Colson B, Marcotte P, Savard G (2007) An overview of bilevel optimization. Ann. Oper. Res. 153(1):235-256. · Zbl 1159.90483 · doi:10.1007/s10479-007-0176-2
[12] Corley H, Chang H (1974) Finding the n most vital nodes in a flow network. Management Sci. 21(3):362-364. · Zbl 0316.90077
[13] Corley H, Sha D (1982) Most vital links and nodes in weighted networks. Oper. Res. Lett. 1(4):157-160. · Zbl 0488.90069 · doi:10.1016/0167-6377(82)90020-7
[14] Cormican K, Morton D, Wood R (1998) Stochastic network interdiction. Oper. Res. 46(2):184-197. · Zbl 0987.90516
[15] Erdős P, Rényi A (1959) On random graphs, I. Publicationes Mathematicae (Debrecen) 6:290-297. · Zbl 0092.15705
[16] Fulkerson D, Harding G (1977) Maximizing the minimum source-sink path subject to a budget constraint. Math. Programming 13(1):116-118. · Zbl 0366.90115 · doi:10.1007/BF01584329
[17] Ghare P, Montgomery D, Turner W (1971) Optimal interdiction policy for a flow network. Naval Res. Logist. Quart. 18(1):37-45. · Zbl 0216.54203 · doi:10.1002/nav.3800180103
[18] Gift PD (2010) Planning for an adaptive evader with application to drug interdiction operations. Unpublished doctoral thesis, Naval Postgraduate School, Monterey, CA.
[19] Granata D, Steeger G, Rebennack S (2013) Network interdiction via a critical disruption path: Branch-and-price algorithms. Comput. Oper. Res. 40(11):2689-2702. · Zbl 1348.90596 · doi:10.1016/j.cor.2013.04.016
[20] Hausken K, Zhuang J (2011) Governments’ and terrorists’ defense and attack in a t-period game. Decision Anal. 8(1):46-70. · Zbl 1398.91368
[21] Hemmecke R, Schultz R, Woodruff D (2003) Interdicting stochastic networks with binary interdiction effort. Woodruff D, ed. Network Interdiction and Stochastic Integer Programming (Springer, Boston), 69-84. · Zbl 1051.90006 · doi:10.1007/0-306-48109-X_4
[22] Israeli E, Wood R (2002) Shortest-path network interdiction. Networks 40(2):97-111. · Zbl 1027.90106 · doi:10.1002/net.10039
[23] Janjarassuk U, Linderoth J (2008) Reformulation and sampling to solve a stochastic network interdiction problem. Networks 52(3):120-132. · Zbl 1173.90345 · doi:10.1002/net.20237
[24] Lai TL, Robbins H (1985) Asymptotically efficient adaptive allocation rules. Adv. Appl. Math. 6(1):4-22. · Zbl 0568.62074 · doi:10.1016/0196-8858(85)90002-8
[25] Lim C, Smith JC (2007) Algorithms for discrete and continuous multicommodity flow network interdiction problems. IIE Trans. 39(1):15-26. · doi:10.1080/07408170600729192
[26] Malaviya A, Rainwater C, Sharkey T (2012) Multi-period network interdiction problems with applications to city-level drug enforcement. IIE Trans. 44(5):368-380. · doi:10.1080/0740817X.2011.602659
[27] Malik K, Mittal A, Gupta S (1989) The k-most vital arcs in the shortest path problem. Oper. Res. Lett. 8(4):223-227. · Zbl 0669.90090 · doi:10.1016/0167-6377(89)90065-5
[28] McLay L, Rothschild C, Guikema S (2012) Robust adversarial risk analysis: A level-k approach. Decision Anal. 9(1):41-54. · Zbl 1398.91193
[29] McMasters A, Mustin T (1970) Optimal interdiction of a supply network. Naval Res. Logist. Quart. 17(3):261-268. · Zbl 0222.90017 · doi:10.1002/nav.3800170302
[30] Modaresi S, Saure D, Vielma J (2012) Learning in combinatorial optimization: What and how to explore. Working paper, Duke University, Durham, NC.
[31] Morton D, Pan F, Saeger K (2007) Models for nuclear smuggling interdiction. IIE Trans. 39(1):3-14. · doi:10.1080/07408170500488956
[32] Pan F, Morton D (2008) Minimizing a stochastic maximum-reliability path. Networks 52(3):111-119. · Zbl 1172.90345 · doi:10.1002/net.20238
[33] Ratliff H, Sicilia G, Lubore S (1975) Finding the n most vital links in flow networks. Management Sci. 21(5):531-539. · Zbl 0311.90073
[34] Robbins H (1952) Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc. 58(5):527-535. · Zbl 0049.37009 · doi:10.1090/S0002-9904-1952-09620-8
[35] Shen S, Smith JC (2012) Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks 60(2):103-119. · Zbl 1251.90376
[36] Shen S, Smith JC, Goli R (2012) Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optim. 9(3):172-188. · Zbl 1254.90280 · doi:10.1016/j.disopt.2012.07.001
[37] Smith JC, Lim C (2008) Algorithms for network interdiction and fortification games. Pardalos PM, Migdalas A, Pitsoulis L, eds. Pareto Optimality, Game Theory Equilibria (Springer, New York), 609-644. · Zbl 1152.91385 · doi:10.1007/978-0-387-77247-9_24
[38] Veremyev A, Boginski V, Pasiliao EL (2014a) Exact identification of critical nodes in sparse networks via new compact formulations. Optim. Lett. 8(4):1245-1259. · Zbl 1292.90260 · doi:10.1007/s11590-013-0666-x
[39] Veremyev A, Prokopyev OA, Pasiliao EL (2014b) An integer programming framework for critical elements detection in graphs. J. Combinatorial Optim. 28(1):233-273. · Zbl 1303.90120 · doi:10.1007/s10878-014-9730-4
[40] Walteros JL, Pardalos PM (2012) Selected topics in critical element detection. Daras NJ, ed. Applications of Mathematics and Informatics in Military Science, Springer Optimization and Its Applications, Vol. 71 (Springer, New York), 9-26. · Zbl 1315.90060 · doi:10.1007/978-1-4614-4109-0_2
[41] Washburn A, Wood R (1995) Two-person zero-sum games for network interdiction. Oper. Res. 43(2):243-251. · Zbl 0832.90124
[42] Wollmer R (1964) Removing arcs from a network. Oper. Res. 12(6):934-940. · Zbl 0204.20102
[43] Wood R (1993) Deterministic network interdiction. Math. Comput. Modeling 17(2):1-18. · Zbl 0800.90772 · doi:10.1016/0895-7177(93)90236-R
[44] Xu J, Zhuang J (2014) Modeling costly learning and counter-learning in a defender-attacker game with private defender information. Ann. Oper. Res. Forthcoming. · Zbl 1345.91064
[45] Zhuang J, Bier VM, Alagoz O (2010) Modeling secrecy and deception in a multiple-period attacker-defender signaling game. Eur. J. Oper. Res. 203(2):409-418. · Zbl 1177.91053 · doi:10.1016/j.ejor.2009.07.028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.