×

BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions. (English) Zbl 1398.86015

Summary: Sediment grain-size distributions provide rich information about sedimentary dynamics and potentially about environmental and climatic changes. However, entrainment, transport, and deposition, as a sequence of sorting process, modify original grain-size distributions of source materials, thereby resulting in complex distribution forms that are commonly multimodal and asymmetrical. However, neither traditional descriptive statistics nor curving fitting methods are able to address this complexity fully. End-member modeling analysis, essentially based on polytope expansion, stands out as a flexible and robust method for the unmixing of sediment grain-size distributions. Yet there are still several key issues that remain unresolved. Here a hierarchical Bayesian end-member modeling analysis of grain-size distributions, fully subject to the non-negative and unit-sum constraints on the distributions, is presented. Within the Bayesian framework, the number of end members, as well as the end-member spectra and fractions can be inferred sequentially using a reversible-jump Markov chain Monte Carlo algorithm in conjunction with Gibbs samplers. Test runs using both a synthetic and a real-world dataset from a small playa located on the southern margin of the Badain Jaran Desert, NW China, reveal that this model can yield geologically meaningful and mathematically optimal outputs, thereby providing a necessary complement and powerful alternative to the existing deterministic methods.

MSC:

86A32 Geostatistics

Software:

MixSIR
Full Text: DOI

References:

[1] Aitchison, J, Logratios and natural laws in compositional data analysis, Math Geol, 31, 563-580, (1999) · doi:10.1023/A:1007568008032
[2] Aitchison, J; Bacon-Shone, J, Convex linear combinations of compositions, Biometrika, 86, 351-364, (1999) · Zbl 0931.62009 · doi:10.1093/biomet/86.2.351
[3] Ashley, GM, Interpretation of polymodal sediments, J Geol, 86, 411-421, (1978) · doi:10.1086/649710
[4] Banks, R, Use of linear programming in the analysis of petrological mixing problems, Contrib Miner Petrol, 70, 237-244, (1979) · doi:10.1007/BF00375353
[5] Berger, JO, Robust Bayesian analysis: sensitivity to the prior, J Stat Plan Inference, 25, 303-328, (1990) · Zbl 0747.62029 · doi:10.1016/0378-3758(90)90079-A
[6] Billheimer, D, Compositional receptor modeling, Environmetrics, 12, 451-467, (2001) · doi:10.1002/env.472
[7] Braun, GE, Quantitative analysis of mineral mixtures using linear programming, Clays Clay Miner, 34, 330-337, (1986) · doi:10.1346/CCMN.1986.0340314
[8] Brewer, M; Tetzlaff, D; Malcolm, I; Soulsby, C, Source distribution modelling for end-member mixing in hydrology, Environmetrics, 22, 921-932, (2011) · doi:10.1002/env.1110
[9] Butler, A; Glasbey, C, A latent Gaussian model for compositional data with zeros, J R Stat Soc Ser C Appl Stat, 57, 505-520, (2008) · doi:10.1111/j.1467-9876.2008.00627.x
[10] Clark, MW, Some methods for statistical analysis of multimodal distributions and their application to grain-size data, J Int Assoc Math Geol, 8, 267-282, (1976) · doi:10.1007/BF01029273
[11] Dietze E, Hartmann K, Diekmann B, IJmker J, Lehmkuhl F, Opitz S, Stauch G, Wünnemann B, Borchers A(2012) An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sediment Geol 243:169-180
[12] Dietze, E; Maussion, F; Ahlborn, M; Diekmann, B; Hartmann, K; Henkel, K; Kasper, T; Lockot, G; Opitz, S; Haberzettl, T, Sediment transport processes across the tibetan plateau inferred from robust grain size end-members in lake sediments, Clim Past, 9, 4855-4892, (2013) · doi:10.5194/cpd-9-4855-2013
[13] Dietze, E; Wünnemann, B; Hartmann, K; Diekmann, B; Jin, H; Stauch, G; Yang, S; Lehmkuhl, F, Early to mid-holocene lake high-stand sediments at lake donggi cona, northeastern tibetan plateau, China, Quat Res, 79, 325-336, (2013) · doi:10.1016/j.yqres.2012.12.008
[14] Dobigeon, N; Tourneret, JY; Chang, CI, Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery, IEEE Trans Signal Process, 56, 2684-2695, (2008) · Zbl 1390.94156 · doi:10.1109/TSP.2008.917851
[15] Dobigeon, N; Moussaoui, S; Tourneret, J-Y; Carteret, C, Bayesian separation of spectral sources under non-negativity and full additivity constraints, Signal Process, 89, 2657-2669, (2009) · Zbl 1197.94045 · doi:10.1016/j.sigpro.2009.05.005
[16] Eches, O; Dobigeon, N; Tourneret, JY, Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical Bayesian algorithm, IEEE J Sel Topics Signal Process, 4, 582-591, (2010) · doi:10.1109/JSTSP.2009.2038212
[17] Fieller, NRJ; Gilbertson, DD; Griffin, CM; Briggs, DJ; Jenkinson, RDS, The statistical modeling of the grain-size distributions of cave sediments using log skew Laplace distributions - creswell crags, near Sheffield, england, J Archaeol Sci, 19, 129-150, (1992) · doi:10.1016/0305-4403(92)90045-5
[18] Flenley, EC; Fieller, NRJ; Gilbertson, DD, The statistical analysis of mixed grain size distributions from Aeolian sands in the libyan pre-desert using log skew Laplace models, Geol Soc Lond Spec Publ, 35, 271-280, (1987) · doi:10.1144/GSL.SP.1987.035.01.18
[19] Folk RL (1966) A review of grain-size parameters. Sedimentology 6:73-93
[20] Gordon, TM; Dipple, GM, Measuring mineral abundance in skarn. II. A new linear programming formulation and comparison with projection and rietveld methods, Can Miner, 37, 17-26, (1999)
[21] Green, PJ, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732, (1995) · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[22] Klovan, J, The use of factor analysis in determining depositional environments from grain-size distributions, J Sediment Res, 36, 115-125, (1966) · doi:10.1306/74D7141A-2B21-11D7-8648000102C1865D
[23] Klovan, J; Imbrie, J, An algorithm and Fortran-IV program for large-scale Q-mode factor analysis and calculation of factor scores, J Int Assoc Math Geol, 3, 61-77, (1971) · doi:10.1007/BF02047433
[24] Kondolf, GM; Adhikari, A, Weibull vs. lognormal distributions for fluvial gravels, J Sediment Res, 70, 456-460, (2000) · doi:10.1306/2DC4091E-0E47-11D7-8643000102C1865D
[25] Lavine, M, Sensitivity in Bayesian statistics: the prior and the likelihood, J Am Stat Assoc, 86, 396-399, (1991) · Zbl 0734.62005 · doi:10.1080/01621459.1991.10475055
[26] Roux, JP; Rojas, EM, Sediment transport patterns determined from grain size parameters: overview and state of the art, Sediment Geol, 202, 473-488, (2007) · doi:10.1016/j.sedgeo.2007.03.014
[27] Ledoit, O; Wolf, M, A well-conditioned estimator for large-dimensional covariance matrices, J Multivar Anal, 88, 365-411, (2004) · Zbl 1032.62050 · doi:10.1016/S0047-259X(03)00096-4
[28] Leys, J; McTainsh, G; Koen, T; Mooney, B; Strong, C, Testing a statistical curve-Fitting procedure for quantifying sediment populations within multi-modal particle-size distributions, Earth Surf Process Landf, 30, 579-590, (2005) · doi:10.1002/esp.1159
[29] Lirer, L; Sheridan, M; Vinci, A, Deconvolution of pyroclastic grain-size spectra for interpretation of transport mechanisms: an application to the AD 79 vesuvio deposits, Sedimentology, 43, 913-926, (1996) · doi:10.1111/j.1365-3091.1996.tb01511.x
[30] McLaren, P; Bowles, D, The effects of sediment transport on grain-size distributions, J Sediment Petrol, 55, 457-470, (1985)
[31] Miesch, AT, Q-mode factor analysis of compositional data, Comput Geosci, 1, 147-159, (1976) · doi:10.1016/0098-3004(76)90003-0
[32] Napier, G; Neocleous, T; Nobile, A, A composite Bayesian hierarchical model of compositional data with zeros, J Chemom, 29, 96-108, (2015) · doi:10.1002/cem.2681
[33] Nordhausen K, Oja H, Filzmoser P, Reimann C (2014) Blind source separation for spatial compositional data. Math Geosci 1-18 · Zbl 1323.86031
[34] Palmer, MJ; Douglas, GB, A Bayesian statistical model for end member analysis of sediment geochemistry, incorporating spatial dependences, J R Stat Soc Ser C Appl Stat, 57, 313-327, (2008) · Zbl 1273.62259 · doi:10.1111/j.1467-9876.2007.00615.x
[35] Parker, EJ; Bloemendal, J, Aeolian process and pedogenesis under the influence of the east Asian monsoon: a statistical approach to particle-size distribution variability, Sediment Geol, 181, 195-206, (2005) · doi:10.1016/j.sedgeo.2005.08.006
[36] Parnell, AC; Phillips, DL; Bearhop, S; Semmens, BX; Ward, EJ; Moore, JW; Jackson, AL; Grey, J; Kelly, DJ; Inger, R, Bayesian stable isotope mixing models, Environmetrics, 24, 387-399, (2013) · Zbl 1525.62195
[37] Poizot, E; Mear, Y; Biscara, L, Sediment trend analysis through the variation of granulometric parameters: a review of theories and applications, Earth Sci Rev, 86, 15-41, (2008) · doi:10.1016/j.earscirev.2007.07.004
[38] Prins MA, Weltje G (1999) End-member modeling of siliciclastic grain-size distributions: the late quaternary record of aeolian and fluvial sediment supply to the Arabian Sea and its paleoclimatic significance. Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations. SEPM (Soc Sediment Geol) Spec Publ 62:91-111
[39] Prins, MA; Bouwer, LM; Beets, CJ; Troelstra, SR; Weltje, GJ; Kruk, RW; Kuijpers, A; Vroon, PZ, Ocean circulation and iceberg discharge in the glacial north atlantic: inferences from unmixing of sediment size distributions, Geology, 30, 555-558, (2002) · doi:10.1130/0091-7613(2002)030<0555:OCAIDI>2.0.CO;2
[40] Prins, MA; Vriend, M; Nugteren, G; Vandenberghe, J; Lu, HY; Zheng, HB; Weltje, GJ, Late quaternary Aeolian dust input variability on the Chinese loess plateau: inferences from unmixing of loess grain-size records, Quat Sci Rev, 26, 230-242, (2007) · doi:10.1016/j.quascirev.2006.07.002
[41] Purkait, B, Patterns of grain-size distribution in some point bars of the usri river, India, J Sediment Res, 72, 367-375, (2002) · doi:10.1306/091001720367
[42] Qiang, M; Chen, F; Zhang, J; Zu, R; Jin, M; Zhou, A; Xiao, S, Grain size in sediments from lake sugan: a possible linkage to dust storm events at the northern margin of the qinghai-tibetan plateau, Environ Geol, 51, 1229-1238, (2007) · doi:10.1007/s00254-006-0416-9
[43] Qin, XG; Cai, BG; Liu, TS, Loess record of the aerodynamic environment in the east Asia monsoon area Since 60,000 years before present, J Geophys Res B Solid Earth, 110, b01204, (2005)
[44] Renner, RM, An examination of the use of the logratio transformation for the testing of endmember hypotheses, Math Geol, 23, 549-563, (1991) · doi:10.1007/BF02065806
[45] Renner, RM, The resolution of a compositional data set into mixtures of fixed source compositions, J R Stat Soc Ser C Appl Stat, 42, 615-631, (1993) · Zbl 0825.62555
[46] Richardson, S; Green, PJ, On Bayesian analysis of mixtures with an unknown number of components, J R Stat Soc Series B Stat Methodol, 59, 731-758, (1997) · doi:10.1111/1467-9868.00095
[47] Soulsby, C; Petry, J; Brewer, M; Dunn, S; Ott, B; Malcolm, I, Identifying and assessing uncertainty in hydrological pathways: a novel approach to end member mixing in a scottish agricultural catchment, J Hydrol, 274, 109-128, (2003) · doi:10.1016/S0022-1694(02)00398-0
[48] Sun, DH; An, ZS; Su, RX; Wu, XH; Wang, SM; Sun, QL; Rea, DK; Vandenberghe, J, Mathematical approach to sedimentary component partitioning of polymodal sediments and its applications, Prog Nat Sci, 11, 374-382, (2001)
[49] Sun, DH; Bloemendal, J; Rea, DK; Vandenberghe, J; Jiang, FC; An, ZS; Su, RX, Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components, Sediment Geol, 152, 263-277, (2002) · doi:10.1016/S0037-0738(02)00082-9
[50] Sutherland, RA; Lee, CT, Application of the log-hyperbolic distribution to Hawaiian beach sands, J Coast Res, 10, 251-262, (1994)
[51] Tauber, F, Spurious clusters in granulometric data caused by logratio transformation, Math Geol, 31, 491-504, (1999) · doi:10.1023/A:1007532222145
[52] Tolosana-Delgado, R; Eynatten, H; Karius, V, Constructing modal mineralogy from geochemical composition: a geometric-Bayesian approach, Comput Geosci, 37, 677-691, (2011) · doi:10.1016/j.cageo.2010.08.005
[53] Visher, GS, Grain size distributions and depositional processes, J Sediment Petrol, 39, 1074-1106, (1969)
[54] Weltje, GJ, End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem, Math Geol, 29, 503-549, (1997) · doi:10.1007/BF02775085
[55] Weltje, GJ; Prins, MA, Muddled or mixed? inferring palaeoclimate from size distributions of deep-sea clastics, Sediment Geol, 162, 39-62, (2003) · doi:10.1016/S0037-0738(03)00235-5
[56] Weltje, GJ; Prins, MA, Genetically meaningful decomposition of grain-size distributions, Sediment Geol, 202, 409-424, (2007) · doi:10.1016/j.sedgeo.2007.03.007
[57] Yu, FH, Situation and comparison of carbonate detection methods, Mar Geol Lett, 23, 35-39, (2007)
[58] Yu, S-Y; Cheng, P; Hou, Z, A caveat on radiocarbon dating of organic-poor bulk lacustrine sediments in arid China, Radiocarbon, 56, 127-141, (2014) · doi:10.2458/56.16922
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.