×

Some numerical studies of interface advection properties of level set method. (English) Zbl 1398.76156

Summary: In this paper, we discuss the results of a series of tests carried out to assess the level set methodology for capturing interfaces between two immiscible fluids. The tests are designed to investigate the accuracy of convection process, the preservation of interface shape, and the mass conservation properties of individual fluids. These test cases involve the advection of interfaces of different shapes exposed to translation, rotation, deformation, and shear flow. Prescribed solenoidal velocity fields are used and no attempt is made to couple the advection of the level set function with the momentum equations. For the solution of level set equation we have employed first-order upwind scheme, MacCormack method, second-order ENO scheme, and fifth-order WENO scheme. Our studies show that the level set method perform well when higher-order schemes are used for the solution of advection equation. However, for certain type of shearing and vortical velocity fields mass conservation is an issue on coarser meshes even with higher order schemes. Finer mesh must be used in such situations to reduce numerical diffusion.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76E17 Interfacial stability and instability in hydrodynamic stability

References:

[1] Armenio V 1997 An improved MAC method (SIMAC) for unsteady High-Reynolds free surface flows. Int. J. Numer. Meth. Fluids 24: 185–214 · Zbl 0893.76048 · doi:10.1002/(SICI)1097-0363(19970130)24:2<185::AID-FLD487>3.0.CO;2-Q
[2] Ashgriz N, Poo J Y 1991 FLAIR: Flux line-segment model for advection and interface reconstruction. J. Comput. Phys. 93: 449–468 · Zbl 0739.76012 · doi:10.1016/0021-9991(91)90194-P
[3] Bell J B, Colella P, Glaz H M 1989 A second-order projection method for incompressible Navier-Stokes equations. J. Comput. Phys. 85: 257–283 · Zbl 0681.76030 · doi:10.1016/0021-9991(89)90151-4
[4] Brackbill J U, Kothe D B, Zemach C 1992 A continuum method for modelling surface tension. J. Comput. Phys. 100: 335–354 · Zbl 0775.76110 · doi:10.1016/0021-9991(92)90240-Y
[5] Chang YC, Hou TY, Merriman B, Osher S 1996 Alevel set formulation of Eulerian interface capturing methods for incompressible fluid flows. J. Comput. Phys. 124: 449–464 · Zbl 0847.76048 · doi:10.1006/jcph.1996.0072
[6] Chern I-L, Glimm J, McBryan O, Plohr B, Yaniv S 1986 Front tracking for gasdynamics. J. Comput. Phys. 62: 83–110 · Zbl 0577.76068 · doi:10.1016/0021-9991(86)90101-4
[7] Deborah G A 2004 Quadtree adaptive method for simulating fluid flows with moving interfaces. J. Comput. Phys. 194: 35–56 · Zbl 1136.76408 · doi:10.1016/j.jcp.2003.08.018
[8] Enright D, Fedkiw R, Ferziger J, Mitchell I 2002 A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183: 83–116 · Zbl 1021.76044 · doi:10.1006/jcph.2002.7166
[9] Fedkiw R, Aslam T, Merriman B, Osher S 1999 A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152: 457–492 · Zbl 0957.76052 · doi:10.1006/jcph.1999.6236
[10] Glimm J, McBryan O, Menikoff R, Sharp D H 1987 Front tracking applied to Rayleigh-Taylor instability. SIAM J. Sci. Comput. 7: 230–251 · Zbl 0582.76107
[11] Glimm J, Grove J W, Li X-L, Shyue K-M, Zhang Q, Zeng Y 1998 Three-dimensional front tracking. SIAM J. Sci. Comput. 19: 703–727 · Zbl 0912.65075 · doi:10.1137/S1064827595293600
[12] Harlow F H, Welch J E 1965 Numerical study of large-amplitude free-surface motions. Phys. Fluids 8: 2182–2189 · Zbl 1180.76043 · doi:10.1063/1.1761178
[13] Harten A, Engquist B, Osher S, Chakravarthy S R 1987 Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71: 231–303 · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[14] Hou TY, Li Z, Osher S, Zhao H 1997 Ahybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys. 134: 236–252 · Zbl 0888.76067 · doi:10.1006/jcph.1997.5689
[15] Jiang G-S, Peng D 2000 Weighted ENO Schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21: 2126–2143 · Zbl 0957.35014 · doi:10.1137/S106482759732455X
[16] Juric D, Tryggvason G 1998 Computations of boiling flows. Int. J. Multi-phase Flow 24: 387–410 · Zbl 1121.76455 · doi:10.1016/S0301-9322(97)00050-5
[17] Kang I S, Leal L G 1987 Numerical solution of axisymmetric unsteady free-boundary problems at finite Reynolds number. I. Finite difference scheme and its application to the deformation of a bubble in a uniaxial straining flow. Phys. Fluids 30: 1929–1940 · Zbl 0632.76121 · doi:10.1063/1.866207
[18] Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G 1994 Modelling merging and fragmentation in multi-phase flows with SURFER. J. Comput. Phys. 113: 134–147 · Zbl 0809.76064 · doi:10.1006/jcph.1994.1123
[19] LeVeque R J, Li Z 1994 The immersed interface methods for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31: 1019–1044 · Zbl 0811.65083 · doi:10.1137/0731054
[20] LeVeque R J 1996 High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33: 627–665 · Zbl 0852.76057 · doi:10.1137/0733033
[21] Liu X-D, Osher S, Chan T 1994 Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115: 200–212 · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[22] Mulder W, Osher S J, Sethian J A 1992 Computing interface motion in compressible gasdynamics. J. Comput. Phys. 100: 209–228 · Zbl 0758.76044 · doi:10.1016/0021-9991(92)90229-R
[23] Nichols B D, Hirt C W 1975 Methods for calculating multi-dimensional, transient free surface flows past bodies. In Proc. First Int. Conf. Num. Ship Hydrodynamics Gaithersburg 20–23
[24] Osher S, Sethian J A 1988 Fronts propagating with curvature-dependent speed: Algorithm based on Hamilton-Jacobi formulations. J. Comput. Phys. 79: 12–49 · Zbl 0659.65132 · doi:10.1016/0021-9991(88)90002-2
[25] Osher S, Fedkiw R 2001 Level set methods: An overview and some recent results. J. Comput. Phys. 169: 463–502 · Zbl 0988.65093 · doi:10.1006/jcph.2000.6636
[26] Osher S, Fedkiw R 2003 Level set methods and dynamic implicit surfaces (NewYork: Springer-Verlag) · Zbl 1026.76001
[27] Popinet S, Zaleski S 1999 Afront tracking algorithm for the accurate representation of surface tension. Int. J. Numer. Meth. Fluids 30: 775–793 · Zbl 0940.76047 · doi:10.1002/(SICI)1097-0363(19990730)30:6<775::AID-FLD864>3.0.CO;2-#
[28] Puckett E G, Almgren A S, Bell J B, Marcus D L, Rider WJ 1997 A high-order projection method for tracking fluid interfaces in variable density incompressible flows. J. Comput. Phys. 130: 269–282 · Zbl 0872.76065 · doi:10.1006/jcph.1996.5590
[29] Rider W J, Kothe D B 1995 Stretching and tearing interface tracking methods in 12th AIAA CFD Conference AIAA-95-1717 San Diego
[30] Rider W J, Kothe D B 1998 Reconstructing volume tracking. J. Comput. Phys. 141: 112–152 · Zbl 0933.76069 · doi:10.1006/jcph.1998.5906
[31] Rudman M 1997 Volume tracking methods for interfacial flowcalculations. Int. J. Numer. Meth. Fluids 24: 679–691 · Zbl 0889.76069 · doi:10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
[32] Scardovelli R, Zaleski S 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31: 567–603 · doi:10.1146/annurev.fluid.31.1.567
[33] Sethian J A 1999 Level set methods and fast marching methods (Cambridge University Press) · Zbl 0929.65066
[34] Sethian JA, Smereka P 2003 Level set methods for fluid interfaces. Ann. Rev. Fluid Mech. 35: 341–372 · Zbl 1041.76057 · doi:10.1146/annurev.fluid.35.101101.161105
[35] Shu C-W, Osher S 1988 Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77: 439–471 · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[36] Smolarkiewicz PK 1982 The multi-dimensional Crowley advection scheme. Monthly Weather Review 110: 1968–1983 · doi:10.1175/1520-0493(1982)110<1968:TMDCAS>2.0.CO;2
[37] Sussman M, Smereka P, Osher S 1994 A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114: 146–159 · Zbl 0808.76077 · doi:10.1006/jcph.1994.1155
[38] Sussman M, Almgren A S, Bell J B, Colella P, Howell L H, Welcome ML 1999 An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148: 81–124 · Zbl 0930.76068 · doi:10.1006/jcph.1998.6106
[39] Sussman M, Puckett E G 2000 A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162: 301–337 · Zbl 0977.76071 · doi:10.1006/jcph.2000.6537
[40] Sussman M, Fatemi E 1999 An efficient, interface-preserving level set Redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20: 1165–1191 · Zbl 0958.76070 · doi:10.1137/S1064827596298245
[41] Tomé M F, Castelo A, Murakami J, Cuminato J A, Minghim R, Oliveira M C F, Mangiavacchi N, McKee S 2000 Numerical simulation of axisymmetric free surface flows. J. Comput. Phys. 157: 441–472 · Zbl 0960.76061 · doi:10.1006/jcph.1999.6348
[42] Tryggvason G, Unverdi S O 1990 Computations of three-dimensional Rayleigh-Taylor instability. Phys. Fluids A2: 656–659
[43] Tryggvason G, Bunner B, Ebrat O, Tauber W 1998 Computations of multi-phase flows by a finite difference/front tracking method. I. multi-fluid flows. Lecture Notes, Department of Mechanical Engineering and Applied Mechanics, University of Michigan
[44] Ubbink O, Issa R I 1999 A method for capturing sharp fluid interfaces on arbitrary meshes. J. Comput. Phys. 153: 26–50 · Zbl 0955.76058 · doi:10.1006/jcph.1999.6276
[45] Unverdi S O, Tryggvason G 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100: 25–37 · Zbl 0758.76047 · doi:10.1016/0021-9991(92)90307-K
[46] Youngs D L 1982 Time-dependent multi-material flow with large fluid distortion, in: Numerical Methods for Fluid Dynamics, (Eds. K W Morton and M J Baines), 273–285, Academic Press
[47] Zhu J, Sethian J A 1992 Projection method coupled to level set interface techniques. J. Comput. Phys. 102: 128–138 · Zbl 0751.76050 · doi:10.1016/S0021-9991(05)80011-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.