×

Cosserat point element \((CPE)\) for finite deformation of orthotropic elastic materials. (English) Zbl 1398.74341

Summary: An eight node brick Cosserat point element \((CPE)\) has been developed for the numerical solution of three-dimensional problems of hyperelastic nonlinear orthotropic elastic materials. In the Cosserat approach, a strain energy function for the \(CPE\) is proposed which satisfies restrictions due to a nonlinear form of the patch test. Part of the strain energy of the \(CPE\) is characterized by a three-dimensional strain energy function that depends on physically based nonlinear orthotropic invariants. Special attention has been focused on developing closed form expressions for constitutive coefficients in another part of the strain energy that characterizes the response to inhomogeneous deformations appropriate for orthotropic material response. A number of example problems are presented which demonstrate that the \(CPE\) is a robust user friendly element for finite deformations of orthotropic elastic materials, which does not exhibit unphysical locking or hourglassing for thin structures or nearly incompressible materials.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B20 Nonlinear elasticity
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S30 Other numerical methods in solid mechanics (MSC2010)
74C99 Plastic materials, materials of stress-rate and internal-variable type

Software:

Maple; ABAQUS
Full Text: DOI

References:

[1] ABAQUS, Version 6.9EF1. ABAQUS, Providence
[2] Belytschko T, Bindemann LP (1986) Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Comput Methods Appl Mech Eng 54: 279–301 · Zbl 0579.73075 · doi:10.1016/0045-7825(86)90107-6
[3] Belytschko T, Bindemann LP (1993) Assumed strain stabilization of the eight node hexahedral element. Comput Methods Appl Mech Eng 105(2): 225–260 · Zbl 0781.73061 · doi:10.1016/0045-7825(93)90124-G
[4] Belytschko T, Ong JS-J, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43: 251–276 · doi:10.1016/0045-7825(84)90067-7
[5] Bonet J, Bhargava P (1995) A uniform deformation gradient hexahedron element with artificial hourglass control. Int J Numer Methods Eng 38(16): 2809–2828 · Zbl 0835.73069 · doi:10.1002/nme.1620381608
[6] César de Sá JMA, Areias PMA, Jorge RMN (2001) Quadrilateral elements for the solution of elasto-plastic finite strain problems. Int J Numer Methods Eng 51(8): 883–917 · Zbl 1023.74045 · doi:10.1002/nme.183
[7] Cowin SC, Van Buskirk WC (1986) Thermodynamics restrictions on the elastic constants of bone. J Biomech 19(1): 85–87 · doi:10.1016/0021-9290(86)90112-0
[8] Crisfield MA, Moita GF, Lyons LPR, Jelenic G (1995) Enhanced lower-order element formulations for large strains. Comput Mech 17(1–25): 62–73 · Zbl 0840.73059 · doi:10.1007/BF00356479
[9] Fredriksson M, Ottosen NS (2007) Accurate eight-node hexahedral element. Int J Numer Methods Eng 72(6): 631–657 · Zbl 1194.74397 · doi:10.1002/nme.2026
[10] Green AE, Adkins JE (1960) Large elastic deformations and non-linear continuum mechanics. Clarendon Press, Oxford · Zbl 0090.17501
[11] Hutter R, Hora P, Niederer P (2000) Total hourglass control for hyperelastic materials. Comput Methods Appl Mech Eng 189(3): 991–1010 · Zbl 0992.74070 · doi:10.1016/S0045-7825(99)00413-2
[12] Jabareen M, Rubin MB (2007) Hyperelasticity and physical shear buckling of a block predicted by the Cosserat point element compared with inelasticity and hourglassing predicted by other element formulations. Comput Mech 40(3): 447–459 · Zbl 1167.74044 · doi:10.1007/s00466-006-0119-9
[13] Jabareen M, Rubin MB (2007) An improved 3-D Cosserat brick element for irregular shaped elements. Comput Mech 40: 979–1004 · Zbl 1168.74048 · doi:10.1007/s00466-007-0158-x
[14] Jabareen M, Rubin MB (2008) A generalized Cosserat point element (CPE) for isotropic nonlinear elastic materials including irregular 3-D brick and thin structural elements. J Mech Mater Struct 3(8): 1465–1498 · doi:10.2140/jomms.2008.3.1465
[15] Jabareen M, Rubin MB (2008) Modified torsion coefficients for a 3-D brick Cosserat point element. Comput Mech 41(4): 517–525 · Zbl 1162.74467 · doi:10.1007/s00466-007-0208-4
[16] Jaquotte OP, Oden JT (1986) An accurate and efficient a posteriori control of hourglass instabilities in underintegrated linear and nonlinear elasticity. Comput Methods Appl Mech Eng 55: 105–128 · Zbl 0571.73094 · doi:10.1016/0045-7825(86)90088-5
[17] Kasper E, Taylor RL (2000) A mixed-enhanced strain method. Part I: geometrically linear problems. Comput Struct 75: 237–250 · doi:10.1016/S0045-7949(99)00134-0
[18] Kasper E, Taylor RL (2000) A mixed-enhanced strain method. Part II: geometrically nonlinear problems. Comput Struct 75: 251–260 · doi:10.1016/S0045-7949(99)00135-2
[19] Klepach D, Rubin MB (2006) Influence of membrane stresses on postbuckling of rectangular plates using a nonlinear elastic 3-D Cosserat brick element. Comput Mech 39(6): 729–740 · Zbl 1178.74105 · doi:10.1007/s00466-005-0023-8
[20] Lekhnitskii SG (1963) Theory of elasticity of an anisotropic elastic body. Holden-Day, San Francisco
[21] Loehnert S, Boerner EFI, Rubin MB, Wriggers P (2005) Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput Mech 36(4): 255–265 · Zbl 1138.74394 · doi:10.1007/s00466-005-0662-9
[22] Maple, Version 13. Maplesoft Math Software, Waterloo
[23] Mueller-Hoeppe DS, Loehnert S, Wriggers P (2009) A finite deformation brick element with inhomogeneous mode enhancement. Int J Numer Methods Eng 78: 1164–1187 · Zbl 1183.74297 · doi:10.1002/nme.2523
[24] Nadler B, Rubin MB (2003) A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int J Solids Struct 40: 4585–4614 · Zbl 1054.74057 · doi:10.1016/S0020-7683(03)00210-5
[25] Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2(7): 1333–1336 · doi:10.2514/3.2372
[26] Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20: 1685–1695 · Zbl 0544.73095 · doi:10.1002/nme.1620200911
[27] Reese S, Wriggers P (1996) Finite element calculation of the stability behaviour of hyperelastic solids with the enhanced strain methods. Z Angew Math Mech 76(S5): 415–416 · Zbl 0925.73844
[28] Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 48: 79–110 · Zbl 0983.74070 · doi:10.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
[29] Reese S, Wriggers P, Reddy BD (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comput Struct 75: 291–304 · doi:10.1016/S0045-7949(99)00137-6
[30] Rubin MB (1985) On the theory of a Cosserat point and its application to the numerical solution of continuum problems. ASME J Appl Mech 52: 368–372 · Zbl 0569.73002 · doi:10.1115/1.3169055
[31] Rubin MB (1985) On the numerical solution of one-dimensional continuum problems using the theory of a Cosserat point. ASME J Appl Mech 52: 373–378 · Zbl 0569.73003 · doi:10.1115/1.3169056
[32] Rubin MB (1995) Numerical solution of two- and three-dimensional thermomechanical problems using the theory of a Cosserat point, theoretical, experimental, and numerical contributions to the mechanics of fluids and solids: a collection of papers in honor of Paul M. Naghdi, edited by J. Casey and M. J. Crochet, Birkäuser, Basel. Spec Issue Z Angew Math Phys 46:308–334
[33] Rubin MB (1996) Restrictions on nonlinear constitutive equations for elastic rods. J Elast 44: 9–36 · Zbl 0881.73055 · doi:10.1007/BF00042190
[34] Rubin MB (2000) Cosserat theories: shells, rods and points., solid mechanics and its applications. Kluwer, Dordrecht
[35] Rubin MB, Jabareen M (2008) Physically based invariants for nonlinear elastic orthotropic solids. J Elast 90: 1–18 · Zbl 1127.74006 · doi:10.1007/s10659-007-9119-z
[36] Rubin MB, Jabareen M (2010) Further developments of physically based invariants for nonlinear elastic orthotropic solids. Accepted for publication in J. Elast 103:289–294 · Zbl 1381.74028
[37] Simo JC, Armero F (1992) Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33: 1413–1449 · Zbl 0768.73082 · doi:10.1002/nme.1620330705
[38] Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8): 1595–1638 · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[39] Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng 110(3–4): 359–386 · Zbl 0846.73068 · doi:10.1016/0045-7825(93)90215-J
[40] Sussmann T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26(1–2): 357–409 · Zbl 0609.73073 · doi:10.1016/0045-7949(87)90265-3
[41] Wriggers P, Korelc J (1996) On enhanced strain methods for small and finite deformations of solids. Comput Mech 18: 413–428 · Zbl 0894.73179 · doi:10.1007/BF00350250
[42] Wriggers P, Reese S (1996) A note on enhanced strain methods for large deformations. Comput Methods Appl Mech Eng 135: 201–209 · Zbl 0893.73072 · doi:10.1016/0045-7825(96)01037-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.