×

Modelling and simulation of adhesive curing processes in bonded piezo metal composites. (English) Zbl 1398.74006

Summary: This work deals with the modelling and simulation of curing phenomena in adhesively bonded piezo metal composites (PMC) which consist of an adhesive layer, an integrated piezoelectric module and two surrounding metal sheet layers. In a first step, a finite strain modelling framework for the representation of polymer curing phenomena is proposed. Based on this formulation, a concretised model is deduced and applied to one specific epoxy based adhesive. Here, appropriate material functions are provided and the thermodynamic consistency is proved. Regarding the finite element implementation, a numerical scheme for time integration and a new approach for maintaining a constant initial volume at arbitrary initial conditions are provided. Finally, finite element simulations of a newly proposed manufacturing process for the production of bonded PMC structures are conducted. Thereby, a representative deep drawing process is analysed with respect to the impact of the adhesive layer on the embedded piezoelectric module.

MSC:

74A15 Thermodynamics in solid mechanics
74D10 Nonlinear constitutive equations for materials with memory
74S05 Finite element methods applied to problems in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)

Software:

ANSYS

References:

[1] Wiedemann M, Sinapius M (2013) Adaptive, tolerant and efficient composite structures. Springer, Berlin · doi:10.1007/978-3-642-29190-6
[2] Messler RW (2004) Joining of materials and structures: from pragmatic process to enabling technology. Butterworth-Heinemann, London
[3] Prasad SE, Waechter DF, Blacow RG, King HW, Yaman Y (2005) Application of piezoelectrics to smart structures. In: II ECCOMAS Thematic Conference on Smart Structures and Materials, Lisbon, Portugal · Zbl 1196.74021
[4] Lloyd JM (2004) Electrical properties of macro-fiber composite actuators and sensors. Ph.D. Thesis, Virginia Polytechnic Institute and State University
[5] Neugebauer R, Lachmann L, Drossel WG, Nestler M, Hensel S (2010) Multi-layer compounds with integrated actor-sensor-functionality. Prod Eng 4(4):379-384 · doi:10.1007/s11740-010-0255-0
[6] Neugebauer R, Lachmann L, Drossel WG, Nestler M, Hensel S (2013) Smart semi-finished parts for the application in sheet-metal structures. Future trends in production engineering. Springer, Berlin, pp 121-130
[7] Drossel WG, Hensel S, Kranz B, Nestler M, Goeschel A (2009) Sheet metal forming of piezoceramic-metal-laminar structures: simulation and experimental analysis. Cirp Ann Manuf Tech 58(1):279-282 · doi:10.1016/j.cirp.2009.03.058
[8] Seemann W, Sattel T (1999) Influence of bonding on the efficiency of piezoceramic patches as actuators in smart structures. In: 1999 Symposium on Smart Structures and Materials, pp. 677-687. International Society for Optics and Photonics
[9] Hossain M, Possart G, Steinmann P (2009) A finite strain framework for the simulation of polymer curing. Part I: elasticity. Comput Mech 44(5):621-630 · Zbl 1171.74006 · doi:10.1007/s00466-009-0397-0
[10] Hossain M, Possart G, Steinmann P (2010) A finite strain framework for the simulation of polymer curing. Part II. Viscoelasticity and shrinkage. Comput Mech 46(3):363-375 · Zbl 1398.74040 · doi:10.1007/s00466-010-0479-z
[11] Klinge S, Bartels A, Steinmann P (2012) The multiscale approach to the curing of polymers incorporating viscous and shrinkage effects. Int J Solids Struct 49(26):3883-3900 · doi:10.1016/j.ijsolstr.2012.08.016
[12] Kolmeder S, Lion A, Landgraf R, Ihlemann J (2011) Thermophysical properties and material modelling of acrylic bone cements used in vertebroplasty. J Therm Anal Calorim 105(2):705-718 · doi:10.1007/s10973-011-1508-7
[13] Liebl C, Johlitz M, Yagimli B, Lion A (2012) Three-dimensional chemo-thermomechanically coupled simulation of curing adhesives including viscoplasticity and chemical shrinkage. Comput Mech 49(5):603-615 · Zbl 1385.74003 · doi:10.1007/s00466-011-0663-9
[14] Lion A, Höfer P (2007) On the phenomenological representation of curing phenomena in continuum mechanics. Arch Mech 59(1):59-89 · Zbl 1175.74012
[15] Mahnken R (2013) Thermodynamic consistent modeling of polymer curing coupled to viscoelasticity at large strains. Int J Solids Struct 50(13):2003-2021 · doi:10.1016/j.ijsolstr.2013.01.033
[16] Landgraf R, Ihlemann J (2011) Zur Modellierung von Aushärtevorgängen in Polymeren unter Verwendung von Stoffgesetzen der Viskoelastizität und Viskoplastizität. PAMM 11(1):399-400 · doi:10.1002/pamm.201110191
[17] Ihlemann J (2006) Beobachterkonzepte und Darstellungsformen der nichtlinearen Kontinuumsmechanik. Habilitation Thesis, Leibniz Universität Hannover · Zbl 1385.74003
[18] Haupt P (2002) Continuum mechanics and theory of materials. Springer, Berlin · Zbl 0993.74001 · doi:10.1007/978-3-662-04775-0
[19] 3M Deutschland: 3M \[^{{\rm TM}}\] TM Scotch-Weld \[^{{\rm TM}}\] TM EPX Epoxy Adhesive DP410—Technical datasheet. 3M Deutschland GmbH (2003).
[20] Kolmeder S, Lion A (2010) On the thermomechanical-chemically coupled behavior of acrylic bone cements: experimental characterization of material behavior and modeling approach. Technische Mechanik 30(1-3):195-202
[21] Lion A, Yagimli B (2008) Differential scanning calorimetry: continuum mechanical considerations with focus to the polymerisation of adhesives. Z Angew Math Mech 88(5):388-402 · Zbl 1275.74004 · doi:10.1002/zamm.200800006
[22] Halley PJ, Mackay ME (1996) Chemorheology of thermosets: an overview. Polym Eng Sci 36(5):593-609 · doi:10.1002/pen.10447
[23] Fournier J, Williams G, Duch C, Aldridge GA (1996) Changes in molecular dynamics during bulk polymerization of an epoxide-asmine system as studied by dielectric relaxation spectroscopy. Macromolecules 29(22):7097-7107 · doi:10.1021/ma9517862
[24] DiBenedetto AT (1987) Prediction of the glass transition temperature of polymers: a model based on the principle of corresponding states. J Polym Sci Polym Phys 25(9):1949-1969 · doi:10.1002/polb.1987.090250914
[25] Pascault JP, Williams RJJ (1990) Glass transition temperature versus conversion relationships for thermosetting polymers. J Polym Sci Polym Phys 28(1):85-95 · doi:10.1002/polb.1990.090280107
[26] Lion A, Johlitz M (2012) On the representation of chemical ageing of rubber in continuum mechanics. Int J Solids Struct 49(10):1227-1240 · doi:10.1016/j.ijsolstr.2012.01.014
[27] Haupt P, Lion A (2002) On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech 159(1):87-124 · Zbl 1143.74312
[28] Häßler R, Kunze W (2010) Thermische Eigenschaften von Klebstoffen und Harzen: DMA-DSC-TGA-TMA. Stoffsammlung thermoanalytischer Messkurven, TA-Instruments · Zbl 1398.74040
[29] Dušek K (1984) Cross-linking of epoxy resins. In: Keith RC, GJ K (eds) Rubber-Modified Thermoset Resins, chap. 1, pp. 3-14. American Chemical Society, Washington DC. doi:10.1021/ba-1984-0208.ch001.
[30] Meuwissen MH, de Boer HA, Steijvers HL, Schreurs PJ, Geers MG (2004) Residual stresses in microelectronics induced by thermoset packaging materials during cure. Microelectron Reliab 44(12):1985-1994 · doi:10.1016/j.microrel.2004.05.001
[31] ANSYS (2011) ANSYS User Manual, Release 14. ANSYS Inc, USA · Zbl 1171.74006
[32] Rendek M, Lion A (2010) Amplitude dependence of filler-reinforced rubber: experiments, constitutive modelling and FEM-Implementation. Int J Solids Struct 47(21):2918-2936 · Zbl 1196.74021 · doi:10.1016/j.ijsolstr.2010.06.021
[33] Shutov AV, Pfeiffer S, Ihlemann J (2012) On the simulation of multi-stage forming processes: invariance under change of the reference configuration. Materialwissenschaft und Werkstofftechnik 43(7):617-625 · doi:10.1002/mawe.201200009
[34] Shutov AV, Kreißig R (2008) Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration. Comput Methods Appl Mech Eng 197(21-24):2015-2029 · Zbl 1194.74026 · doi:10.1016/j.cma.2007.12.017
[35] Häuselmann Metall (2002) Data sheet EN AW-5083 (AlMg4, 5Mn). Häuselmann Metall GmbH · Zbl 1066.74524
[36] Giddings PF, Bowen CR, Kim HA (2009) A coupled field finite element model to predict actuation properties of piezoelectrically actuated bistable composites. ICCM-17: 17th International Conference on Composite Materials
[37] Smart Material (2012) Macro Fiber Composite—MFC. Smart Material GmbH
[38] Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367-382 · doi:10.1122/1.549853
[39] Daue TP, Kunzmann J, Schönecker A (2010) Energy harvesting systems using piezo-electric macro fiber composites. 6th Annual Symposium—Nanotechnology: state of the art and applications
[40] Landgraf R, Ihlemann J, Kolmeder S, Lion A (2012) Thermo-mechanically coupled curing processes of acrylic bone cements used in vertebroplasty: Material modelling and Finite-Element-Simulation. In: Proceedings of 10th International Symposium Computer Methods in Biomechanics and Biomedical Engineering, Berlin, Germany, April 7-11, 2012, pp. 19-24. Published by ARUP, ISBN: 978-0-9562121-5-3
[41] Landgraf R, Ihlemann J, Kolmeder S, Lion A, Lebsack H, Kober C (2013) Modelling and simulation of acrylic bone cement injection and curing within the framework of vertebroplasty. arXiv preprint:1307.0880 · Zbl 1335.74043
[42] Lion A, Kardelky C (2004) The Payne effect in finite viscoelasticity: constitutive modelling based on fractional derivatives and intrinsic time scales. Int J Plast 20(7):1313-1345 · Zbl 1066.74524 · doi:10.1016/j.ijplas.2003.07.001
[43] Lubarda V (2004) On thermodynamic potentials in linear thermoelasticity. Int J Solids Struct 41(26):7377-7398 · Zbl 1076.74003 · doi:10.1016/j.ijsolstr.2004.05.070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.