×

Optimal sup-norm rates and uniform inference on nonlinear functionals of nonparametric IV regression. (English) Zbl 1398.62088

Summary: This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function \(h_0\) and functionals of \(h_0\). First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series two-stage least squares) estimators of \(h_0\) and its derivatives. Second, we derive a lower bound that describes the best possible (minimax) sup-norm rates of estimating \(h_0\) and its derivatives, and show that the sieve NPIV estimator can attain the minimax rates when \(h_0\) is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal root-mean-squared rates for severely ill-posed problems, and are only a logarithmic factor slower than the optimal root-mean-squared rates for mildly ill-posed problems. Third, we use our sup-norm rates to establish the uniform Gaussian process strong approximations and the score bootstrap uniform confidence bands (UCBs) for collections of nonlinear functionals of \(h_0\) under primitive conditions, allowing for mildly and severely ill-posed problems. Fourth, as applications, we obtain the first asymptotic pointwise and uniform inference results for plug-in sieve \(t\)-statistics of exact consumer surplus (CS) and deadweight loss (DL) welfare functionals under low-level conditions when demand is estimated via sieve NPIV. Our real data application of UCBs for exact CS and DL functionals of gasoline demand reveals interesting patterns and is applicable to other goods markets.

MSC:

62G08 Nonparametric regression and quantile regression
62G05 Nonparametric estimation
60G15 Gaussian processes
62G15 Nonparametric tolerance and confidence regions
62P20 Applications of statistics to economics

References:

[1] Ai, C. and X.Chen (2003), “Efficient estimation of models with conditional moment restrictions containing unknown functions.” Econometrica, 71 (6), 1795-1843. · Zbl 1154.62323
[2] Andrews, D. W. K. (2011), “Examples of l2‐complete and boundedly‐complete distributions.” Cowles Foundation Discussion Paper No. 1801.
[3] Belloni, A., V.Chernozhukov, D.Chetverikov, and K.Kato (2015), “Some new asymptotic theory for least squares series: Pointwise and uniform results.” Journal of Econometrics, 186 (2), 345-366. · Zbl 1331.62250
[4] Bierens, H. (1982), “Consistent model specification tests.” Journal of Econometrics, 20, 105-134. · Zbl 0549.62076
[5] Blundell, R., X.Chen, and D.Kristensen (2007), “Semi‐nonparametric iv estimation of shape‐invariant engel curves.” Econometrica, 75 (6), 1613-1669. · Zbl 1133.91461
[6] Blundell, R., A.Duncan, and C.Meghir (1998), “Estimating labor supply responses using tax reforms.” Econometrica, 66 (4), 827-861. · Zbl 1015.91522
[7] Blundell, R. and J. L.Horowitz (2007), “A non‐parametric test of exogeneity.” The Review of Economic Studies, 74 (4), 1035-1058. · Zbl 1124.62027
[8] Blundell, R., J. L.Horowitz, and M.Parey (2012), “Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation.” Quantitative Economics, 3 (1), 29-51. · Zbl 1419.91430
[9] Blundell, R., J. L.Horowitz, and M.Parey (2017), “Nonparametric estimation of a nonseparable demand function under the slutsky inequality restriction.” The Review of Economics and Statistics, 99 (2), 291-304.
[10] Blundell, R., T.MaCurdy, and C.Meghir (2007), “Labor supply models: Unobserved heterogeneity, nonparticipation and dynamics.” In Handbook of Econometrics, Vol. 6, Part A, 4667-4775, Chapter 69, Elsevier.
[11] Breunig, C. (2015), “Goodness‐of‐fit tests based on series estimators in nonparametric instrumental regression.” Journal of Econometrics, 184 (2), 328-346. · Zbl 1331.62226
[12] Carrasco, M., J.‐P.Florens, and E.Renault (2007), “Linear inverse problems in structural econometrics estimation based on spectral decomposition and regularization.” In Handbook of Econometrics, Vol. 6, Part B (J. J.Heckman (ed.) and E. E.Leamer (ed.), eds.), 5633-5751, Chapter 77, Elsevier.
[13] Cattaneo, M. D. and M. H.Farrell (2013), “Optimal convergence rates, bahadur representation, and asymptotic normality of partitioning estimators.” Journal of Econometrics, 174 (2), 127-143. · Zbl 1283.62060
[14] Chen, X., V.Chernozhukov, S.Lee, and W. K.Newey (2014), “Local identification of nonparametric and semiparametric models.” Econometrica, 82 (2), 785-809. · Zbl 1410.62198
[15] Chen, X. and T. M.Christensen (2013), “Optimal uniform convergence rates for sieve nonparametric instrumental variables regression.” arXiv preprint arXiv:1311.0412, Cowles Foundation Discussion Paper no. 1923 and Cemmap working paper CWP56/13.
[16] Chen, X. and T. M.Christensen (2015a), “Optimal sup‐norm rates, adaptivity and inference in nonparametric instrumental variables estimation.” arXiv preprint arXiv:1508.03365, Cowles Foundation Discussion Paper no. 1923r.
[17] Chen, X. and T. M.Christensen (2015b), “Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions.” Journal of Econometrics, 188 (2), 447-465. · Zbl 1337.62101
[18] Chen, X. and D.Pouzo (2009), “Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals.” Journal of Econometrics, 152 (1), 46-60. · Zbl 1431.62111
[19] Chen, X. and D.Pouzo (2012), “Estimation of nonparametric conditional moment models with possibly nonsmooth generalized residuals.” Econometrica, 80 (1), 277-321. · Zbl 1274.62232
[20] Chen, X. and D.Pouzo (2015), “Sieve Wald and QLR inferences on semi/nonparametric conditional moment models.” Econometrica, 83 (3), 1013-1079. · Zbl 1410.62046
[21] Chen, X. and M.Reiss (2011), “On rate optimality for ill‐posed inverse problems in econometrics.” Econometric Theory, 27 (3), 497-521. · Zbl 1218.62028
[22] Chernozhukov, V., S.Lee, and A. M.Rosen (2013), “Intersection bounds: Estimation and inference.” Econometrica, 81 (2), 667-737. · Zbl 1274.62233
[23] Darolles, S., Y.Fan, J.‐P.Florens, and E.Renault (2011), “Nonparametric instrumental regression.” Econometrica, 79 (5), 1541-1565. · Zbl 1274.62277
[24] DeVore, R. A. and G. G.Lorentz (1993), Constructive Approximation. Grundlehren der mathematischen Wissenschaften, Vol. 303. Springer‐Verlag, Berlin. · Zbl 0797.41016
[25] Fan, Y. and Q.Li (1996), “Consistent model specification tests: Omitted variables and semiparametric functional forms.” Econometrica, 64 (4), 865-890. · Zbl 0854.62038
[26] Florens, J.‐P., J.Johannes, and S.Van Bellegem (2012), “Instrumental regression in partially linear models.” The Econometrics Journal, 15, 304-324. · Zbl 1521.62049
[27] Florens, J.‐P. and A.Simoni (2012), “Nonparametric estimation of an instrumental variables regression: A quasi‐Bayesian approach based on regularized posterior.” Journal of Econometrics, 170, 458-475. · Zbl 1443.62094
[28] Gagliardini, P. and O.Scaillet (2012), “Tikhonov regularization for nonparametric instrumental variable estimators.” Journal of Econometrics, 167 (1), 61-75. · Zbl 1441.62694
[29] Hall, P. and J. L.Horowitz (2005), “Nonparametric methods for inference in the presence of instrumental variables.” The Annals of Statistics, 33 (6), 2904-2929. · Zbl 1084.62033
[30] Hardle, W. and E.Mammen (1993), “Comparing nonparametric versus parametric regression fits.” The Annals of Statistics, 21 (4), 1926-1947. · Zbl 0795.62036
[31] Hausman, J. A. (1981), “Exact consumer”s surplus and deadweight loss.” The American Economic Review, 71 (4), 662-676.
[32] Hausman, J. A. and W. K.Newey (1995), “Nonparametric estimation of exact consumers surplus and deadweight loss.” Econometrica, 63 (6), 1445-1476. · Zbl 0840.90044
[33] Hausman, J. A. and W. K.Newey (2016), “Individual heterogeneity and average welfare.” Econometrica, 84 (3), 1225-1248. · Zbl 1419.91437
[34] Hausman, J. A. and W. K.Newey (2017), “Nonparametric welfare analysis.” Annu. Rev. Econ., 9 (1), 521-546.
[35] Hoderlein, S. and H.Holzmann (2011), “Demand analysis as an ill‐posed inverse problem with semiparametric specification.” Econometric Theory, 27 (3), 609-638. · Zbl 1218.62033
[36] Hong, Y. and H.White (1995), “Consistent specification testing via nonparametric series regression.” Econometrica, 63 (5), 1133-1159. · Zbl 0941.62125
[37] Horowitz, J. L. (2006), “Testing a parametric model against a nonparametric alternative with identification through instrumental variables.” Econometrica, 74 (2), 521-538. · Zbl 1145.62328
[38] Horowitz, J. L. (2011), “Applied nonparametric instrumental variables estimation.” Econometrica, 79 (2), 347-394. · Zbl 1210.62034
[39] Horowitz, J. L. (2012), “Specification testing in nonparametric instrumental variable estimation.” Journal of Econometrics, 167 (2), 383-396. Fourth Symposium on Econometric Theory and Applications (SETA). · Zbl 1441.62740
[40] Horowitz, J. L. (2014), “Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter.” Journal of Econometrics, 180, 158-173. · Zbl 1293.62074
[41] Horowitz, J. L. and S.Lee (2012), “Uniform confidence bands for functions estimated nonparametrically with instrumental variables.” Journal of Econometrics, 168, 175-188. · Zbl 1443.62099
[42] Horowitz, J. L. and V. G.Spokoiny (2001), “An adaptive, rate‐optimal test of a parametric mean‐regression model against a nonparametric alternative.” Econometrica, 69 (3), 599-631. · Zbl 1017.62012
[43] Huang, J. Z. (1998), “Projection estimation in multiple regression with application to functional ANOVA models.” The Annals of Statistics, 26 (1), 242-272. · Zbl 0930.62042
[44] Huang, J. Z. (2003), “Local asymptotics for polynomial spline regression.” The Annals of Statistics, 31 (5), 1600-1635. · Zbl 1042.62035
[45] Johannes, J., S.vanBellegem, and A.Vanhems (2011), “Convergence rates for ill‐posed inverse problems with an unknown operator.” Econometric Theory, 27 (3), 522-545. · Zbl 1218.62026
[46] Kato, K. (2013), “Quasi‐Bayesian analysis of nonparametric instrumental variables models.” The Annals of Statistics, 41 (5), 2359-2390. · Zbl 1281.62120
[47] Lavergne, P. and Q. H.Vuong (1996), “Nonparametric selection of regressors: The nonnested case.” Econometrica, 64 (1), 207-219. · Zbl 0860.62039
[48] Lounici, K. and R.Nickl (2011), “Global uniform risk bounds for wavelet deconvolution estimators.” The Annals of Statistics, 39 (1), 201-231. · Zbl 1209.62060
[49] Mammen, E. (1993), “Bootstrap and wild bootstrap for high dimensional linear models.” The Annals of Statistics, 21 (1), 255-285. · Zbl 0771.62032
[50] Newey, W. K. (1997), “Convergence rates and asymptotic normality for series estimators.” Journal of Econometrics, 79 (1), 147-168. · Zbl 0873.62049
[51] Newey, W. K. (2013), “Nonparametric instrumental variables estimation.” American Economic Review: Papers and Proceedings, 103 (3), 550-556.
[52] Newey, W. K. and J. L.Powell (2003), “Instrumental variable estimation of nonparametric models.” Econometrica, 71 (5), 1565-1578. · Zbl 1154.62415
[53] Pollard, D. (2002), A User’s Guide to Measure Theoretic Probability. Cambridge University Press, Cambridge. · Zbl 0992.60001
[54] Stinchcombe, M. B. and H.White (1998), “Consistent specification testing with nuisance parameters present only under the alternative.” Econometric Theory, 14 (3), 295-325. · Zbl 1419.62105
[55] Stone, C. J. (1982), “Optimal global rates of convergence for nonparametric regression.” The Annals of Statistics, 10 (4), 1040-1053. · Zbl 0511.62048
[56] Triebel, H. (2006), Theory of Function Spaces III. Birkhäuser, Basel. · Zbl 1104.46001
[57] Vanhems, A. (2010), “Non‐parametric estimation of exact consumer surplus with endogeneity in price.” Econometrics Journal, 13 (3), S80-S98. · Zbl 07708399
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.