×

Constrained extremum problems, regularity conditions and image space analysis. I: The scalar finite-dimensional case. (English) Zbl 1398.49034

Summary: Image space analysis has proved to be instrumental in unifying several theories, apparently disjoint from each other. With reference to constraint qualifications/regularity conditions in optimization, such an analysis has been recently introduced by Moldovan and Pellegrini. Based on this result, the present paper is a preliminary part of a work, which aims at exploiting the image space analysis to establish a general regularity condition for constrained extremum problems. The present part deals with scalar constrained extremum problems in a Euclidean space. The vector case as well as the case of infinite-dimensional image will be the subject of subsequent papers.
For Part II, see [L. Pellegrini and the author, ibid. 177, No. 3, 788–810 (2018; Zbl 1398.49033)].

MSC:

49N60 Regularity of solutions in optimal control
90C30 Nonlinear programming
90C46 Optimality conditions and duality in mathematical programming

Citations:

Zbl 1398.49033
Full Text: DOI

References:

[1] Giannessi, F, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 42, 331-365, (1984) · Zbl 0504.49012 · doi:10.1007/BF00935321
[2] Karush, W.: Minima of functions of several variables with inequalities as side conditions. Master’s thesis, University of Chicago (1939) · Zbl 1398.90126
[3] John, F; Friedrichs, KO (ed.); Neugebauer, OE (ed.); Stoker, JJ (ed.), Extremum problems with inequalities as subsidiary conditions, 187-204, (1948), New York · Zbl 0034.10503
[4] Kuhn, HW; Tucker, AW; Neyman, J (ed.), Nonlinear programming, 481-492, (1951), Berkeley · Zbl 0044.05903
[5] Peterson, DW, A review of constraint qualifications in finite-dimensional spaces, SIAM Rev., 15, 639-654, (1973) · doi:10.1137/1015075
[6] Eustaquio, R.G., Karas, E.W., Ribeiro, A.A.: Constraint qualification for nonlinear programming. Technical report, Federal University of Parana (2010) · Zbl 1190.90143
[7] Flores-Bazán, F; Mastroeni, G, Strong duality in cone constrained nonconvex optimization, SIAM J. Optim., 23, 153-169, (2013) · Zbl 1285.90077 · doi:10.1137/120861400
[8] Flores-Bazán, F; Mastroeni, G, Characterizing FJ and KKT conditions in nonconvex mathematical programming with applications, SIAM J. Optim., 25, 647-676, (2015) · Zbl 1398.90126 · doi:10.1137/13094606X
[9] Moldovan, A; Pellegrini, L, On regularity for constrained extremum problems. part I: sufficient optimality conditions, J. Optim. Theory Appl., 142, 147-163, (2009) · Zbl 1198.90391 · doi:10.1007/s10957-009-9518-3
[10] Moldovan, A; Pellegrini, L, On regularity for constrained extremum problems. part II: necessary optimality conditions, J. Optim. Theory Appl., 142, 165-183, (2009) · Zbl 1205.90294 · doi:10.1007/s10957-009-9521-8
[11] Giannessi, F.: Constrained Optimization and Image Space Analysis: Separation of Sets and Optimality Conditions, vol. 1. Springer, New York (2005) · Zbl 1082.49001
[12] Quang, PH; Yen, ND, New proof of a theorem of F. giannessi, J. Optim. Theory Appl., 68, 385-387, (1991) · Zbl 0697.49022 · doi:10.1007/BF00941576
[13] Zhu, SK; Li, SJ, Unified duality theory for constrained extremum problems. part I: image space analysis, J. Optim. Theory Appl., 161, 738-762, (2014) · Zbl 1307.90198 · doi:10.1007/s10957-013-0468-4
[14] Zhu, SK; Li, SJ, Unified duality theory for constrained extremum problems. part II: special duality schemes, J. Optim. Theory Appl., 161, 763-782, (2014) · Zbl 1316.90060 · doi:10.1007/s10957-013-0467-5
[15] Giannessi, F; Mastroeni, G, Separation of sets and Wolfe duality, J. Glob. Optim., 42, 401-412, (2008) · Zbl 1172.90382 · doi:10.1007/s10898-008-9301-2
[16] Dien, PH; Mastroeni, G; Pappalardo, M; Quang, PH, Regularity conditions for constrained extremum problems via image space, J. Optim. Theory Appl., 80, 19-37, (1994) · Zbl 0797.90089 · doi:10.1007/BF02196591
[17] Rubinov, AM; Uderzo, A, On global optimality conditions via separation functions, J. Optim. Theory Appl., 109, 345-370, (2001) · Zbl 0983.90049 · doi:10.1023/A:1017566406216
[18] Rubinov, A.M., Yang, X.Q.: Lagrange-Type Functions in Constrained Non-convex Optimization. Kluwer Academic Publishers, Dordrecht (2003) · Zbl 1049.90066 · doi:10.1007/978-1-4419-9172-0
[19] Giannessi, F.: Some perspectives on vector optimization via image space analysis. J. Optim. Theory Appl. 177(3) (2018) · Zbl 1461.65152
[20] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998) · Zbl 0888.49001 · doi:10.1007/978-3-642-02431-3
[21] Luo, HZ; Mastroeni, G; Wu, HX, Separation approach for augmented Lagrangians in constrained nonconvex optimization, J. Optim. Theory Appl., 144, 275-290, (2010) · Zbl 1190.90143 · doi:10.1007/s10957-009-9598-0
[22] Gould, F.J., Howe, S.: A new result on interpreting Lagrange multipliers as dual variables. Technical report no. 738, The Institute of Statistics, University of North Carolina (1971)
[23] Flegel, M. L.: Constraint qualifications and stationarity concepts for mathematical programs with equilibrium constraints. Ph.D. thesis, Institute of Applied Mathematics and Statistics, University of Würzburg (2005)
[24] Guo, L; Lin, GH; Ye, JJ, Stability analysis for parametric mathematical programs with geometric constraints and its applications, SIAM J. Optim., 22, 1151-1176, (2012) · Zbl 1258.49035 · doi:10.1137/120868657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.