×

Decay of correlations for billiards with flat points I: channel effects. (English) Zbl 1398.37015

Blokh, Alexander M. (ed.) et al., Dynamical systems, ergodic theory, and probability. In memory of Kolya Chernov. Conference dedicated to the memory of Nikolai Chernov, University of Alabama at Birmingham, Birmingham, AL, USA, May 18–20, 2015. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2773-3/pbk; 978-1-4704-4224-8/ebook). Contemporary Mathematics 698, 239-286 (2017).
Summary: In this paper we construct a special family of semidispersing billiards bounded on a rectangle with a dispersing scatterer. The billiard induces a Lorenz gas with infinite horizon when one replaces the rectangle with a torus. We assume there exist two pairs of flat points (with zero curvature) on the boundary of this scatterer, whose tangent lines form two channels in the billiard table that are each perpendicular to two parallel sides of the rectangle. We study the mixing rates of a one-parameter family of the semi-dispersing billiards, as well as those for the corresponding Lorenz gas on a torus. We show that the correlation functions of both maps decay polynomially.
For the entire collection see [Zbl 1376.37001].

MSC:

37A60 Dynamical aspects of statistical mechanics
37A25 Ergodicity, mixing, rates of mixing
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
60F05 Central limit and other weak theorems

References:

[1] Bunimovich, L. A.; Sina\u\i, Ya. G.; Chernov, N. I., Markov partitions for two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk. Russian Math. Surveys, 45 45, 3, 105-152 (1990) · Zbl 0721.58036 · doi:10.1070/RM1990v045n03ABEH002355
[2] Bunimovich, L. A.; Sina\u\i, Ya. G.; Chernov, N. I., Statistical properties of two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk. Russian Math. Surveys, 46 46, 4, 47-106 (1991) · Zbl 0780.58029 · doi:10.1070/RM1991v046n04ABEH002827
[3] Chernov, N. I.; Haskell, C., Nonuniformly hyperbolic \(K\)-systems are Bernoulli, Ergodic Theory Dynam. Systems, 16, 1, 19-44 (1996) · Zbl 0853.58081 · doi:10.1017/S0143385700008695
[4] Chernov, N., Decay of correlations and dispersing billiards, J. Statist. Phys., 94, 3-4, 513-556 (1999) · Zbl 1047.37503 · doi:10.1023/A:1004581304939
[5] Chernov, Nikolai; Dolgopyat, Dmitry, Hyperbolic billiards and statistical physics. International Congress of Mathematicians. Vol. II, 1679-1704 (2006), Eur. Math. Soc., Z\`“urich · Zbl 1118.37019
[6] Dolgopyat, D. I.; Chernov, N. I., Anomalous current in periodic Lorentz gases with an infinite horizon, Uspekhi Mat. Nauk. Russian Math. Surveys, 64 64, 4, 651-699 (2009) · Zbl 1179.78021 · doi:10.1070/RM2009v064n04ABEH004630
[7] Chernov, N.; Markarian, R., Dispersing billiards with cusps: slow decay of correlations, Comm. Math. Phys., 270, 3, 727-758 (2007) · Zbl 1113.37020 · doi:10.1007/s00220-006-0169-z
[8] Chernov, Nikolai; Markarian, Roberto, Chaotic billiards, Mathematical Surveys and Monographs 127, xii+316 pp. (2006), American Mathematical Society, Providence, RI · Zbl 1101.37001 · doi:10.1090/surv/127
[9] Chernov, N.; Young, L. S., Decay of correlations for Lorentz gases and hard balls. Hard ball systems and the Lorentz gas, Encyclopaedia Math. Sci. 101, 89-120 (2000), Springer, Berlin · Zbl 0977.37001 · doi:10.1007/978-3-662-04062-1\_5
[10] Chernov, N.; Zhang, H.-K., Billiards with polynomial mixing rates, Nonlinearity, 18, 4, 1527-1553 (2005) · Zbl 1143.37314 · doi:10.1088/0951-7715/18/4/006
[11] Chernov, N.; Zhang, H.-K., A family of chaotic billiards with variable mixing rates, Stoch. Dyn., 5, 4, 535-553 (2005) · Zbl 1111.37029 · doi:10.1142/S0219493705001572
[12] Chernov, N.; Zhang, H.-K., Improved estimates for correlations in billiards, Comm. Math. Phys., 277, 2, 305-321 (2008) · Zbl 1143.37024 · doi:10.1007/s00220-007-0360-x
[13] Chernov, Nikolai; Zhang, Hong-Kun, On statistical properties of hyperbolic systems with singularities, J. Stat. Phys., 136, 4, 615-642 (2009) · Zbl 1181.37052 · doi:10.1007/s10955-009-9804-3
[14] Dolgopyat, Dmitry; Sz\'asz, Domokos; Varj\'u, Tam\'as, Recurrence properties of planar Lorentz process, Duke Math. J., 142, 2, 241-281 (2008) · Zbl 1136.37022 · doi:10.1215/00127094-2008-006
[15] Dolgopyat D., Szasz D. and Varju T., Limit theorems for locally perturbed Lorentz processes, preprint. · Zbl 1177.37042
[16] Gallavotti, Giovanni; Ornstein, Donald S., Billiards and Bernoulli schemes, Comm. Math. Phys., 38, 83-101 (1974) · Zbl 0313.58017
[17] Katok, Anatole; Strelcyn, Jean-Marie; Ledrappier, F.; Przytycki, F., Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics 1222, viii+283 pp. (1986), Springer-Verlag, Berlin · Zbl 0658.58001 · doi:10.1007/BFb0099031
[18] Markarian, Roberto, Billiards with polynomial decay of correlations, Ergodic Theory Dynam. Systems, 24, 1, 177-197 (2004) · Zbl 1115.37037 · doi:10.1017/S0143385703000270
[19] Ornstein, Donald; Weiss, Benjamin, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems, 18, 2, 441-456 (1998) · Zbl 0915.58076 · doi:10.1017/S0143385798100354
[20] Sina\u\i, Ja. G., Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk, 25, 2 (152), 141-192 (1970) · Zbl 0252.58005
[21] Sina\u\i, Ya. G.; Chernov, N. I., Ergodic properties of some systems of two-dimensional disks and three-dimensional balls, Uspekhi Mat. Nauk, 42, 3(255), 153-174, 256 (1987) · Zbl 0644.58007
[22] Wojtkowski, Maciej, Invariant families of cones and Lyapunov exponents, Ergodic Theory Dynam. Systems, 5, 1, 145-161 (1985) · Zbl 0578.58033 · doi:10.1017/S0143385700002807
[23] Young, Lai-Sang, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2), 147, 3, 585-650 (1998) · Zbl 0945.37009 · doi:10.2307/120960
[24] Zhang, Hong-Kun, Free path of billiards with flat points, Discrete Contin. Dyn. Syst., 32, 12, 4445-4466 (2012) · Zbl 1256.37029 · doi:10.3934/dcds.2012.32.4445
[25] Zhang, Hong-Kun, Free path of billiards with flat points, Discrete Contin. Dyn. Syst., 32, 12, 4445-4466 (2012) · Zbl 1256.37029 · doi:10.3934/dcds.2012.32.4445
[26] Zhang H.-K., Decay of correlations for billiards with flat points I: channel effect, submitted.
[27] Zhang H.-K., Decay of correlations for billiards with flat points I: channel effect, submitted.
[28] Nirenberg, Louis, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6, 337-394 (1953) · Zbl 0051.12402 · doi:10.1002/cpa.3160060303
[29] Oliveira, Fernando, On the generic existence of homoclinic points, Ergodic Theory Dynam. Systems, 7, 4, 567-595 (1987) · Zbl 0612.58027 · doi:10.1017/S0143385700004211
[30] Oliveira, Fernando, On the \(C^\infty\) genericity of homoclinic orbits, Nonlinearity, 13, 3, 653-662 (2000) · Zbl 0983.37058 · doi:10.1088/0951-7715/13/3/308
[31] Paternain, Gabriel P., Geodesic flows, Progress in Mathematics 180, xiv+149 pp. (1999), Birkh\`“auser Boston, Inc., Boston, MA · Zbl 0930.53001 · doi:10.1007/978-1-4612-1600-1
[32] Pixton, Dennis, Planar homoclinic points, J. Differential Equations, 44, 3, 365-382 (1982) · Zbl 0506.58029 · doi:10.1016/0022-0396(82)90002-X
[33] Pogorelov, A. V., Regularity of a convex surface with given Gaussian curvature, Mat. Sbornik N.S., 31(73), 88-103 (1952) · Zbl 0048.40501
[34] H. Poincare. Les methodes nouvelles de la mecanique celeste. (French) [New methods of celestial mechanics.] Gauthier-Villars, Paris, vol. 1 in 1892; vol 2 in 1893; vol. 3 in 1899. · JFM 24.1130.01
[35] Poincar\'e, Henri, Sur les lignes g\'eod\'esiques des surfaces convexes, Trans. Amer. Math. Soc., 6, 3, 237-274 (1905) · JFM 36.0669.01 · doi:10.2307/1986219
[36] Pugh, Charles C., The closing lemma, Amer. J. Math., 89, 956-1009 (1967) · Zbl 0167.21803 · doi:10.2307/2373413
[37] Pugh, Charles C.; Robinson, Clark, The \(C^1\)closing lemma, including Hamiltonians, Ergodic Theory Dynam. Systems, 3, 2, 261-313 (1983) · Zbl 0548.58012 · doi:10.1017/S0143385700001978
[38] Robinson, Clark, Closing stable and unstable manifolds on the two sphere, Proc. Amer. Math. Soc., 41, 299-303 (1973) · Zbl 0275.58013 · doi:10.2307/2038860
[39] Smale, Stephen, Diffeomorphisms with many periodic points. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), 63-80 (1965), Princeton Univ. Press, Princeton, N.J. · Zbl 0142.41103
[40] I. A. Taimanov. On the existence of three nonselfintersecting closed geodesics on manifolds homeomorphic to the 2-sphere. Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 605-635; translation in Russian Acad. Sci. Izv. Math. 40 (1993), 565-590. · Zbl 0771.53027
[41] Takens, Floris, Homoclinic points in conservative systems, Invent. Math., 18, 267-292 (1972) · Zbl 0247.58007 · doi:10.1007/BF01389816
[42] Visscher, Daniel, A new proof of Franks’ lemma for geodesic flows, Discrete Contin. Dyn. Syst., 34, 11, 4875-4895 (2014) · Zbl 1351.37151 · doi:10.3934/dcds.2014.34.4875
[43] Xia, Zhihong, Homoclinic points in symplectic and volume-preserving diffeomorphisms, Comm. Math. Phys., 177, 2, 435-449 (1996) · Zbl 0959.37050
[44] Xia, Zhihong, Area-preserving surface diffeomorphisms, Comm. Math. Phys., 263, 3, 723-735 (2006) · Zbl 1103.37029 · doi:10.1007/s00220-005-1514-3
[45] Xia, Zhihong; Zhang, Pengfei, Homoclinic points for convex billiards, Nonlinearity, 27, 6, 1181-1192 (2014) · Zbl 1341.37022 · doi:10.1088/0951-7715/27/6/1181
[46] P. Zhang. Convex billiards on convex spheres. Ann. I. H. Poincare Anal. Non Lineaire (in press). DOI:10.1016/j.anihpc.2016.07.001. · Zbl 1377.37058
[47] P. Zhang. Convex billiards on convex spheres. Ann. I. H. Poincare Anal. Non Lineaire (in press). DOI:10.1016/j.anihpc.2016.07.001. · Zbl 1377.37058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.