×

Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and \(p\)-Laplacian operator. (English) Zbl 1398.35269

Summary: In this paper, we investigate the existence of positive solutions for a system of nonlinear fractional differential equations nonlocal boundary value problems with parameters and \(p\)-Laplacian operator. Under different combinations of superlinearity and sublinearity of the nonlinearities, various existence results for positive solutions are derived in terms of different values of parameters via the Guo-Krasnosel’skii fixed point theorem.

MSC:

35R11 Fractional partial differential equations

References:

[1] Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999) · Zbl 0924.34008
[2] Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[3] Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) · Zbl 0789.26002
[4] Leibenson, LS: General problem of the movement of a compressible fluid in a porous medium. Izvestiia Akad. Nauk SSSR 9, 7-10 (1945) · Zbl 0061.46108
[5] Liu, X, Jia, M, Ge, W: The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator. Appl. Math. Lett. 65, 56-62 (2017) · Zbl 1357.34018 · doi:10.1016/j.aml.2016.10.001
[6] Jiang, W, Qiu, J, Yang, C: The existence of solutions for fractional differential equations with p-Laplacian at resonance. Chaos 27, 032102 (2017) · Zbl 1390.34021 · doi:10.1063/1.4979367
[7] Dong, X, Bai, Z, Zhang, S: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, 5 (2017) · Zbl 1357.34012 · doi:10.1186/s13661-016-0735-z
[8] Chen, T, Liu, W, Liu, J: Solvability of periodic boundary value problem for fractional p-Laplacian equation. Appl. Math. Comput. 24, 422-431 (2014) · Zbl 1335.34012
[9] Liu, X, Jia, M, Xiang, X: On the solvability of a fractional differential equation model involving the p-Laplacian operator. Comput. Math. Appl. 64, 3267-3275 (2012) · Zbl 1268.34020 · doi:10.1016/j.camwa.2012.03.001
[10] Ding, Y, Wei, Z: On the extremal solution for a nonlinear boundary value problems of fractional p-Laplacian operator. Filomat 30, 3771-3778 (2016) · Zbl 1474.34137 · doi:10.2298/FIL1614771D
[11] Jafari, H, Baleanu, D, Khan, H, Akhan, R, Khan, A: Existence criterion for the solutions of fractional order p-Laplacian boundary value problems. Bound. Value Probl. 2015, 164 (2015) · Zbl 1381.34016 · doi:10.1186/s13661-015-0425-2
[12] Wang, Y, Liu, L, Wu, Y: Extremal solutions for p-Laplacian fractional integro-differential equation with integral conditions on infinite integrals via iterative computation. Adv. Differ. Equ. 2015, 24 (2015) · Zbl 1398.45007 · doi:10.1186/s13662-015-0358-1
[13] Guo, X: Existence of unique solution to switched fractional differential equations with p-Laplacian operator. Turk. J. Math. 39, 864-871 (2015) · Zbl 1348.34014 · doi:10.3906/mat-1503-25
[14] Liang, S, Zhang, J: Existence and uniqueness of positive solutions for integral boundary problems of nonlinear fractional differential equations with p-Laplacian operator. Rocky Mt. J. Math. 44, 953-974 (2014) · Zbl 1319.34012 · doi:10.1216/RMJ-2014-44-3-953
[15] Lu, H, Han, Z, Sun, S, Liu, J: Existence on positive solution for boundary value problems of nonlinear fractional differential equations with p-Laplacian. Adv. Differ. Equ. 2013, 30 (2013) · Zbl 1365.34016 · doi:10.1186/1687-1847-2013-30
[16] Shen, T, Liu, W, Shen, X: Existence and uniqueness of solutions for several BVPs of fractional differential equations with p-Laplacian operator. Mediterr. J. Math. 13, 4623-4637 (2016) · Zbl 1349.34018 · doi:10.1007/s00009-016-0766-9
[17] Xu, J, Dong, W: Existence and uniqueness of positive solutions for a fractional boundary value problem with p-Laplacian operator. Acta Math. Sin. (Chin. Ser.) 59, 385-396 (2016) · Zbl 1363.34027
[18] Zhang, X, Liu, L, Wiwatanapataphee, B, Wu, Y: The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition. Appl. Math. Comput. 235, 412-422 (2014) · Zbl 1334.34060
[19] Wu, J, Zhang, X, Liu, L, Wu, Y: Twin iterative solutions for a fractional differential turbulent flow model. Bound. Value Probl. 2016, 98 (2016) · Zbl 1383.34014 · doi:10.1186/s13661-016-0604-9
[20] Lv, Z: Existence results for m-point boundary value problems of nonlinear fractional differential equations with p-Laplacian operator. Adv. Differ. Equ. 2014, 69 (2014) · Zbl 1417.34019 · doi:10.1186/1687-1847-2014-69
[21] Lv, Z: Existence results of fractional differential equations with irregular boundary conditions and p-Laplacian operator. J. Appl. Math. Comput. 46, 33-49 (2014) · Zbl 1296.34026 · doi:10.1007/s12190-013-0735-4
[22] Liu, Z, Lu, L: A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator. Electron. J. Qual. Theory Differ. Equ. 2012, 70 (2012) · Zbl 1340.34299 · doi:10.1186/1687-1847-2012-70
[23] Tan, J, Cheng, C: Existence of solutions of boundary value problems for fractional differential equations with p-Laplacian operator in Banach spaces. Numer. Funct. Anal. Optim. 38, 738-753 (2017) · Zbl 1372.34021 · doi:10.1080/01630563.2017.1293091
[24] Li, S, Zhang, X, Wu, Y, Caccetta, L: Extremal solutions for p-Laplacian differential systems via iterative computation. Appl. Math. Lett. 26, 1151-1158 (2013) · Zbl 1316.34006 · doi:10.1016/j.aml.2013.06.014
[25] Ren, T, Li, S, Zhang, X, Liu, L: Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 2017, 118 (2017) · Zbl 1376.35083 · doi:10.1186/s13661-017-0849-y
[26] Rao, SN: Multiplicity of positive solutions for coupled system of fractional differential equation with p-Laplacian two-point BVPs. J. Appl. Math. Comput. 55, 41-58 (2017) · Zbl 1378.34019 · doi:10.1007/s12190-016-1024-9
[27] Liu, Y, Xie, D, Bai, C, Yang, D: Multiple positive solutions for a coupled system of fractional multi-point BVP with p-Laplacian operator. Adv. Differ. Equ. 2017, 168 (2017) · Zbl 1422.34050 · doi:10.1186/s13662-017-1221-3
[28] Hu, L, Zhang, S: Existence results for a coupled system of fractional differential equations with p-Laplacian operator and infinite-point boundary conditions. Bound. Value Probl. 2017, 88 (2017) · Zbl 1367.26018 · doi:10.1186/s13661-017-0819-4
[29] He, J, Song, X: The uniqueness of solution for a class of fractional order nonlinear systems with p-Laplacian operator. Abstr. Appl. Anal. 2014, Article ID 921209 (2014) · Zbl 1474.34030
[30] He, Y: The eigenvalue problem for a coupled system of singular p-Laplacian differential equations involving fractional differential-integral conditions. Adv. Differ. Equ. 2016, 209 (2016) · Zbl 1419.34093 · doi:10.1186/s13662-016-0930-3
[31] Khan, A, Li, Y, Shah, K, Khan, TS: On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions. Complexity 2017, Article ID 8197610 (2017) · Zbl 1373.93157 · doi:10.1155/2017/8197610
[32] Cheng, L, Liu, W, Ye, Q: Boundary value problem for a coupled system of fractional differential equations with p-Laplacian operator at resonance. Electron. J. Differ. Equ. 2014, 60 (2014) · Zbl 1292.34002 · doi:10.1186/1687-1847-2014-162
[33] Xu, X, Jiang, D, Yuan, C: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 71, 4676-4688 (2009) · Zbl 1178.34006 · doi:10.1016/j.na.2009.03.030
[34] Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988) · Zbl 0661.47045
[35] Wang, H: On the number of positive solutions of nonlinear systems. J. Math. Anal. Appl. 281, 287-306 (2003) · Zbl 1036.34032 · doi:10.1016/S0022-247X(03)00100-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.