×

Exponential stability and numerical treatment for piezoelectric beams with magnetic effect. (English) Zbl 1398.35232

Summary: In this paper, we consider a one-dimensional dissipative system of piezoelectric beams with magnetic effect, inspired by the model studied by K. A. Morris and A. Ö. Özer [“Strong stabilization of piezoelectric beams with magnetic effects”, in: Proceedings of the 52nd IEEE conference on decision and control. Los Alamitos, CA: IEEE Computer Society. 3014–3019 (2013; doi:10.1109/cdc.2013.6760341)]. Our main interest is to analyze the issues relating to exponential stability of the total energy of the continuous problem and reproduce a numerical counterpart in a totally discrete domain, which preserves the important decay property of the numerical energy.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35L53 Initial-boundary value problems for second-order hyperbolic systems
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35B35 Stability in context of PDEs
74F15 Electromagnetic effects in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
78A25 Electromagnetic theory (general)
Full Text: DOI

References:

[1] D.S. Almeida Júnior, A.J.A. Ramos and M.L. Santos, Observability inequality for the finite-difference semidiscretization of the 1-d coupled wave equations. Adv. Comput. Math.41 (2015) 105-130. · Zbl 1314.65119 · doi:10.1007/s10444-014-9351-6
[2] H.T. Banks, K. Ito and C. Wang, Exponentially stable approximations of weakly damped wave equations, in Estimation and Control of Distributed Parameter Systems. Vol. 100 of International Series in Numerical Analysis. Birkhauser, Basel (1991) 1-33. · Zbl 0850.93719
[3] A.J. Brunner, M. Barbezat, C. Huber and P.H. Flüeler, The potential of active fiber composites made from piezoelectric fibers for actuating and sensing applications in structural health monitoring. Mat. Struct.38 (2005) 561-567. · doi:10.1007/BF02479548
[4] C.Y.K. Chee, L. Tong and G.P. Steven, A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. J. Intel. Mat. Syst. Str.9 (1998) 1-17.
[5] P. Destuynder, I. Legrain, L. Castel and N. Richard, Theoretical, numerical and experimental discussion of the use of piezoelectric devices for control-structure interaction. Eur. J. Mech. A. Solids.11 (1992) 181-213.
[6] J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-d wave equation. ESAIM: M2AN33 (1999) 407-438. · Zbl 0947.65101 · doi:10.1051/m2an:1999123
[7] L.S. Joseph and S. Lefschetz, Stability by Liapunov’s Direct Method With Applications. Academic Press, New York, USA (1961). · Zbl 0098.06102
[8] R.D. Krieg, On the behavior of a numerical approximation to the rotatory inertia and transverse shear plate. J. Appl. Mech.40 (1973) 977-982. · Zbl 0272.73036 · doi:10.1115/1.3423197
[9] J.L. Lions, Exact controllability, stabilization and perturbations for distributed parameter systems. SIAM Rev.30 (1988) 1-68. · Zbl 0644.49028 · doi:10.1137/1030001
[10] B. Miara and , Santos, energy decay in piezoelectric systems. Appl. Anal. Int. J.88 (2009) 947-960. · Zbl 1171.93032 · doi:10.1080/00036810903042166
[11] M. Miletic and A. Arnold, A piezoelectric Euler-Bernoulli beam with dynamic boundary control: stability and dissipative FEM. Acta Appl. Math.138 (2015) 241-277. · Zbl 1326.35034 · doi:10.1007/s10440-014-9965-1
[12] K.A. Morris and A.Ö. Özer, Strong stabilization of piezoelectric beams with magnetic effects, in Proc. of 52nd IEEE Conference on Decision & Control. (2013) 3014-3019. · doi:10.1109/CDC.2013.6760341
[13] K.A. Morris and A.Ö. Özer, Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects. SIAM J. Control Optim.52 (2014) 2371-2398. · Zbl 1300.93090 · doi:10.1137/130918319
[14] A.Ö. Özer, Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects. Math. Control Signals Syst.27 (2015) 219-244. · Zbl 1327.93096 · doi:10.1007/s00498-015-0139-0
[15] A.Ö. Özer, Modeling and control results for an active constrained layered (ACL) beam actuated by two voltage sources with/without magnetic effects. IEEE Trans. Autom. Control62 (2017) 6445-6450. · Zbl 1390.74065 · doi:10.1109/TAC.2017.2653361
[16] D.W. Pohl, Dynamic piezoeletric translation devices. Rev. Sci. Instrum.41 (1987) 54-57. · doi:10.1063/1.1139566
[17] R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems, 2nd edn. Wiley (1967). · Zbl 0155.47502
[18] J.E.M. Rivera, Energy decay rates in linear thermoelasticity. Funkc. Ekvac.35 (1992) 19-30. · Zbl 0838.73006
[19] N.N. Rogacheva, The Theory of Piezoelectric Shells and Plates. CRC Press, Boca Raton, FL, USA (1994). · Zbl 1330.74122
[20] N. Rouche, P. Habets and M. Laloy, Stability theory by Liapunov’s direct method. Appl. Math. Sci.22 (1977) 19-30. · Zbl 0364.34022
[21] Y.V.K. Sadasiva Rao and B.C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores. J. Sound Vibr.34 (1974) 309-326. · Zbl 0282.73034 · doi:10.1016/S0022-460X(74)80315-9
[22] H.F. Sare, B. Miara and M.L. Santos, A note on analyticity to piezoelectric systems. Math. Methods Appl. Sci.35 (2012) 2157-2165. · Zbl 1261.35043 · doi:10.1002/mma.2559
[23] G.D. Smith, Numerical Solutions of Partial Differential Equations: Finite Difference Methods. New York, USA (1985). · Zbl 0576.65089
[24] R.C. Smith, Smart Material Systems: Model Development. SIAM, PHL, USA (2005). · Zbl 1086.74002 · doi:10.1137/1.9780898717471
[25] W. Strauss and L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys.28 (1974) 271-278. · Zbl 0387.65076 · doi:10.1016/0021-9991(78)90038-4
[26] L.T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation. Adv. Comput. Math.26 (2007) 337-365. · Zbl 1119.65086 · doi:10.1007/s10444-004-7629-9
[27] H.F. Tiersten, Linear Piezoelectric Plate Vibrations. Plenum Press, New York, USA (1969).
[28] H.S. Tzou, Piezoelectric Shells, Vol. 19 of Solid Mech. Appl. Kluwer Academic, The Netherlands (1993).
[29] J.M. Wang and B.Z. Guo, On the stability of swelling porous elastic soils with fluid saturation by one internal damping. IMA J. Appl. Math.71 (2006) 565-582. · Zbl 1115.74020 · doi:10.1093/imamat/hxl009
[30] J. Yang, An Introduction to the Theory of Piezoelectricity. Springer (2005). · Zbl 1066.74001
[31] T.J. Yeh, H.R. Feng and L.S. Wen, An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators. Simul. Model. Pract. Theory Sci. Direct.16 (1998) 93-110. · doi:10.1016/j.simpat.2007.11.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.