×

On the location of maxima of solutions of Schrödinger’s equation. (English) Zbl 1398.35033

The paper under review contains a proof of the following inequality. There is a universal constant \(c>0\) such that, if \(\Omega \subset \mathbb{R}^2\) is simply connected, \(u:\Omega \rightarrow \mathbb{R}\) vanishes on the boundary \(\partial \Omega\), and \(|u|\) assumes a maximum in \(x_0 \in \Omega\), then \[ \inf_{y \in \partial \Omega}{ \| x_0 - y\|} \geq c \left\| \frac{\Delta u}{u} \right\|^{-1/2}_{L^{\infty}(\Omega)}. \] The proof of this inequality (and higher dimensional results in the paper) is based on the probabilistic interpretation (Feynman-Kac formula). The authors give several applications of this inequality:
\(\bullet\) refined Hayman-Makai theorem: the point on the membrane that achieves the maximal amplitude is at distance \(\sim \lambda^{-1/2}\) from the boundary, where \(\lambda\) is the first Laplacian eigenfunction with Dirichlet boundary conditions;
\(\bullet\) generalization of the results proved by E. H. Lieb [Invent. Math. 74, 441–448 (1983; Zbl 0538.35058)], and B. Georgiev and M. Mukherjee [Anal. PDE, 11, 133–148 (2018; Zbl 1378.35208]): if \(u\) solves \(-\Delta u = Vu\) on \(\Omega \subset \mathbb{R}^n\) with Dirichlet boundary conditions, then the ball \(B\) with radius \(\sim \|V\|_{L^{\infty}(\Omega)}^{-1/2}\) centered at the point in which \(|u|\) assumes the maximum is almost fully contained in \(\Omega\) in the sense that \(|B \cap \Omega| \geq 0.99 |B|.\)
\(\bullet\) estimates of the torsion function;
\(\bullet\) a refinement of the Barta’s inequality [C.R. Acad. Sci. Paris 204, 472–473 (1937)].

MSC:

35J10 Schrödinger operator, Schrödinger equation
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35P15 Estimates of eigenvalues in context of PDEs

References:

[1] Arnold, D. N.; David, G.; Jerison, D.; Mayboroda, S.; Filoche, M.The effective confining potential of quantum states in disordered media. Phys. Rev. Lett.116 (2016), no. 5, 056602. doi: 10.1103/PhysRevLett.116.056602
[2] Barta, J.Sur la vibration fondamentale d’une membrane. C. R. Acad. Sci. Paris204 (1937), no. 4, 472-473. · JFM 63.0762.02
[3] Bañuelos, R.Four unknown constants. In “Low eigenvalues of Laplace and Schrödinger operators.” Oberwolfach Rep.6 (2009), no. 1, 409-410. doi: 10.4171/OWR/2009/06
[4] Bañuelos, R.; Burdzy, K.On the “hot spots” conjecture of J. Rauch. J. Funct. Anal.164 (1999), no. 1, 1-33. doi: 10.1006/jfan.1999.3397 · Zbl 0938.35045
[5] Bañuelos, R.; Carroll, T.Brownian motion and the fundamental frequency of a drum. Duke Math. J.75 (1994), no. 3, 575-602. doi: 10.1215/S0012-7094-94-07517-0 · Zbl 0817.58046
[6] Bañuelos, R.; Carroll, T.Addendum to: “Brownian motion and the fundamental frequency of a drum.” Duke Math. J.82 (1996), no. 1, 227. doi: 10.1215/S0012-7094-96-08210-1 · Zbl 0847.58075
[7] Benson, B.; Laugesen, R. S.; Minion, M.; Siudeja, B.Torsion and ground state maxima: close but not the same. Preprint, 2015. arxiv:1507.01565 [math.AP]
[8] Brasco, L.; Magnanini, R.The heart of a convex body. Geometric properties for parabolic and elliptic PDE’s, 49-66. Springer INdAM Series, 2. Springer, Milan, 2013. doi: 10.1007/978-88-470-2841-8_4 · Zbl 1272.52005
[9] Brasco, L.; Magnanini, R.; Salani, P.The location of the hot spot in a grounded convex conductor. Indiana Univ. Math. J.60 (2011), no. 2, 633-659. doi: 10.1512/iumj.2011.60.4578 · Zbl 1328.35063
[10] Brown, P. R.Constructing mappings onto radial slit domains. Rocky Mountain J. Math.37 (2007), no. 6, 1791-1812. doi: 10.1216/rmjm/1199649824 · Zbl 1156.30009
[11] Cheng, X.; Rachh, M.; Steinerberger, S.On the diffusion geometry of graph Laplacians and applications. Preprint, 2016. arxiv:1611.03033 [math.SP]
[12] Cima, J. A.; Derrick, W.A solution of Δu + f(u) = 0 on a triangle. Irish Math. Soc. Bull.68 (2011), 55-63 (2012). · Zbl 1388.35011
[13] Cima, J. A.; Derrick, W. R.; Kalachev, L. V.The maximum for Δu + f(u) = 0 on an isosceles triangle. Irish Math. Soc. Bull.76 (2015), 45-54. · Zbl 1347.35051
[14] Croke, C. B.The first eigenvalue of the Laplacian for plane domains. Proc. Amer. Math. Soc.81 (1981), no. 2, 304-305. doi: 10.2307/2044213 · Zbl 0462.35071
[15] DeCarli, L.; Hudson, S. M.A Faber‐Krahn inequality for solutions of Schrödinger’s equation. Adv. Math.230 (2012), no. 4‐6, 2416-2427. doi: 10.1016/j.aim.2012.04.014 · Zbl 1254.35064
[16] Filoche, M.; Mayboroda, S.Universal mechanism for Anderson and weak localization. Proc. Natl. Acad. Sci. USA109 (2012), no. 37, 14761-14766. doi: 10.1073/pnas.1120432109
[17] Georgiev, B.; Mukherjee, M.Nodal geometry, heat diffusion and Brownian motion. Preprint, 2016. arxiv:1602.07110 [math.DG]
[18] Grieser, D.; Jerison, D.The size of the first eigenfunction of a convex planar domain. J. Amer. Math. Soc.11 (1998), no. 1, 41-72. doi: 10.1090/S0894-0347-98-00254-9 · Zbl 0896.35092
[19] Grigor′yan, A.; Saloff‐Coste, L.Hitting probabilities for Brownian motion on Riemannian manifolds. J. Math. Pures Appl. (9)81 (2002), no. 2, 115-142. doi: 10.1016/S0021-7824(01)01244-2 · Zbl 1042.58022
[20] Hao, S.; Barnett, A. H.; Martinsson, P. G.; Young, P.High‐order accurate methods for Nyström discretization of integral equations on smooth curves in the plane. Adv. Comput. Math.40 (2014), no. 1, 245-272. doi: 10.1007/s10444-013-9306-3 · Zbl 1300.65093
[21] Has′minskiĭ, R. Z.On positive solutions of the equation \(\mathcal{U} \) + Vu = 0. Theor. Probability Appl.4, (1959), 309-318. · Zbl 0089.34501
[22] Hayman, W. K.Some bounds for principal frequency. Applicable Anal.7 (1977/78), no. 3, 247-254. doi: 10.1080/00036817808839195 · Zbl 0383.35053
[23] Helsing, J.; Holst, A.Variants of an explicit kernel‐split panel‐based Nyström discretization scheme for Helmholtz boundary value problems. Adv. Comput. Math.41 (2015), no. 3, 691-708. doi: 10.1007/s10444-014-9383-y · Zbl 1319.65117
[24] Hersch, J.Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défaut et principe de maximum. Z. Angew. Math. Phys.11 (1960), 387-413. doi: 10.1007/BF01604498 · Zbl 0104.41403
[25] Lieb, E. H.On the lowest eigenvalue of the Laplacian for the intersection of two domains. Invent. Math.74 (1983), no. 3, 441-448. doi: 10.1007/BF01394245 · Zbl 0538.35058
[26] Makai, E.A lower estimation of the principal frequencies of simply connected membranes. Acta Math. Acad. Sci. Hungar.16 (1965), 319-323. doi: 10.1007/BF01904840 · Zbl 0141.30201
[27] Maz′ya, V.Sobolev spaces with applications to elliptic partial differential equations. Second, revised and augmented edition. Grundlehren der mathematischen Wissenschaften, 342. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-15564-2 · Zbl 1217.46002
[28] Osserman, R.A note on Hayman’s theorem on the bass note of a drum. Comment. Math. Helv.52 (1977), no. 4, 545-555. doi: 10.1007/BF02567388 · Zbl 0374.52008
[29] Pólya, G.; Szegö, G.Isoperimetric inequalities in mathematical physics. Annals of Mathematics Studies, 27. Princeton University Press, Princeton, N.J., 1951. · Zbl 0044.38301
[30] Protter, M. H.A lower bound for the fundamental frequency of a convex region. Proc. Amer. Math. Soc.81 (1981), no. 1, 65-70. doi: 10.2307/2043987 · Zbl 0476.35060
[31] Simon, B.Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.)7 (1982), no. 3, 447-526. doi: 10.1090/S0273-0979-1982-15041-8 · Zbl 0524.35002
[32] Steinerberger, S.Lower bounds on nodal sets of eigenfunctions via the heat flow. Comm. Partial Differential Equations39 (2014), no. 12, 2240-2261. doi: 10.1080/03605302.2014.942739 · Zbl 1304.35455
[33] Steinerberger, S. Localization of quantum states and landscape functions. Proc. Amer. Math. Soc., forthcoming. · Zbl 1365.35098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.