×

Modeling and control for HIV/AIDS transmission in China based on data from 2004 to 2016. (English) Zbl 1397.92648

Summary: HIV is one of the major life-threatening viruses that are spreading in the People’s Republic of China (China for short). A susceptible-exposed in the latent stage-infectious (SEI) model is established to sketch the evolution of epidemic. The basic reproduction number is defined. By constructing Lyapunov function, globally asymptotical stabilities of the disease-free and endemic equilibria are given. Then, optimal control theory is applied in HIV/AIDS epidemic. Precaution, screening, and treatment of control variables are introduced and a new model with control is established. Through the HIV/AIDS data in China, all parameters involved in SEI model are analyzed and parts of them are estimated. Further, by control model, optimal strategy is obtained. Results show that the precaution and treatment are the major contributors to preventing and controlling HIV/AIDS epidemic.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
49J15 Existence theories for optimal control problems involving ordinary differential equations

Software:

fminsearch
Full Text: DOI

References:

[2] Barré-Sinoussi, F.; Chermann, J. C.; Rey, F., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science, 220, 4599, 868-871, (1983) · doi:10.1126/science.6189183
[4] Ma, Y.; Li, Z.; Zhang, K.; Yang, W.; Ren, X.; Yang, Y., HIV was first discovered among IDUs in China, Chinese Journal of Epidemiology, 11-184, (1990)
[5] Zhang, K. L.; SJ, M. a., Epidemiologu of HIV in China, BMJ Clinical Research, 324, 803-804, (2002)
[6] Jia, Z.; Wang, L.; Chen, R. Y.; Li, D.; Wang, L.; Qin, Q.; Ding, Z.; Ding, G.; Zang, C.; Wang, N., Tracking the evolution of HIV/AIDS in China from 1989–2009 to inform future prevention and control efforts, PLoS ONE, 6, 10, (2011) · doi:10.1371/journal.pone.0025671
[7] Sun, X.; Lu, F.; Wu, Z.; Poundstone, K.; Zeng, G.; Xu, P.; Zhang, D.; Liu, K.; Liau, A., Evolution of information-driven HIV/AIDS policies in China, International Journal of Epidemiology, 39, supplement 2, 4-13, (2010) · doi:10.1093/ije/dyq217
[8] Wu, Z.; Sullivan, S. G.; Wang, Y.; Rotheram-Borus, M. J.; Detels, R., Evolution of China’s response to HIV/AIDS, The Lancet, 369, 9562, 679-690, (2007) · doi:10.1016/S0140-6736(07)60315-8
[9] Settel, E., AIDS in China: An Annotated Chronology: 1985–2003, (2003), Montreal, Canada: China AIDS Survey, Montreal, Canada
[10] Xue, B., HIV/AIDS policy and policy evolution in China, International Journal of STD and AIDS, 16, 7, 459-464, (2005) · doi:10.1258/0956462054308477
[11] Wang, C.-W.; Chan, C. L. W.; Ho, R. T. H., HIV/AIDS-related deaths in China, 2000–2012, AIDS Care - Psychological and Socio-Medical Aspects of AIDS/HIV, 27, 7, 849-854, (2015) · doi:10.1080/09540121.2015.1005568
[12] Chen, L.; Yang, J.; Zhang, R.; Xu, Y.; Zheng, J.; Jiang, J.; Jiang, J.; He, L.; Wang, N.; Yeung, P. C.; Pan, X., Rates and risk factors associated with the progression of HIV to AIDS among HIV patients from Zhejiang, China between 2008 and 2012, AIDS Research and Therapy, 12, 1, article no. 32, (2015) · doi:10.1186/s12981-015-0074-7
[13] Liu, M.; Ruan, Y.; Han, L.; Zhou, Y., Dynamic models to predict future HIV/AIDS prevalence in China, Journal for China Aids & Std, 335-337, (2003)
[14] Liu, M.; Zhou, Y., An age-structured dynamic model of HIV, Journal of North China Institute of Technology, 25-87, (2002)
[15] Bacaër, N.; Abdurahman, X.; Ye, J. l., Modeling the HIV/AIDS epidemic among injecting drug users and sex workers in Kunming, China, Bulletin of Mathematical Biology, 68, 3, 525-550, (2006) · Zbl 1334.92389 · doi:10.1007/s11538-005-9051-y
[16] Zhang, T.; Jia, M.; Luo, H.; Zhou, Y.; Wang, N., Study on a {HIV}/{AIDS} model with application to Yunnan province, China, Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, 35, 9, 4379-4392, (2011) · Zbl 1225.92051 · doi:10.1016/j.apm.2011.03.004
[17] Sun, X.; Xiao, Y.; Peng, Z.; Wang, N., Modelling HIV/AIDS epidemic among men who have sex with men in China, BioMed Research International, 2013, (2013) · doi:10.1155/2013/413260
[18] Chen, C.; Xiao, Y., Modeling saturated diagnosis and vaccination in reducing HIV/AIDS infection, Abstract and Applied Analysis, (2014) · Zbl 1470.92184 · doi:10.1155/2014/414383
[19] Mastroberardino, A.; Cheng, Y.; Abdelrazec, A.; Liu, H., Mathematical modeling of the HIV/AIDS epidemic in Cuba, International Journal of Biomathematics, 8, 4, (2015) · Zbl 1328.92079 · doi:10.1142/S1793524515500473
[20] Huo, H.-F.; Chen, R., Stability of an HIV/AIDS treatment model with different stages, Discrete Dynamics in Nature and Society, 2015, (2015) · Zbl 1418.92077 · doi:10.1155/2015/630503
[21] Eduafo, S., An SEI model of HIV transmission in Ghana
[22] Fleming, W. H.; Rishel, R. W., Deterministic and Stochastic Optimal Control, 1, (1975), New York, NY, USA: Springer, New York, NY, USA · Zbl 0323.49001
[23] Kirschner, D.; Lenhart, S.; Serbin, S., Optimal control of the chemotherapy of HIV, Journal of Mathematical Biology, 35, 7, 775-792, (1997) · Zbl 0876.92016 · doi:10.1007/s002850050076
[24] Agusto, F. B.; Marcus, N.; Okosun, K. O., Application of optimal control to the epidemiology of malaria, Electronic Journal of Differential Equations, (2012) · Zbl 1250.92026
[25] Agusto, F. B.; Adekunle, A. I., Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model, BioSystems, 119, 1, 20-44, (2014) · doi:10.1016/j.biosystems.2014.03.006
[27] Xue, X., New explanations to ICD-10 coding standard for HIV/AIDS clinical stages and coding principle for its complications, Chinese Journal of Health Statistics, 377-382, (2009)
[28] NCAIDS, NCSTD, China Journal AIDS and STD, China CDC, 10, 835, (2015)
[29] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, (1993), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0777.34002
[30] Gaff, H.; Schaefer, E., Optimal control applied to vaccination and treatment strategies for various epidemiological models, Mathematical Biosciences and Engineering. MBE, 6, 3, 469-492, (2009) · Zbl 1169.49018 · doi:10.3934/mbe.2009.6.469
[31] Bakare, E. A.; Nwagwo, A.; Danso-Addo, E., Optimal control analysis of an SIR epidemic model with constant recruitment, International Journal of Applied Mathematical Research, 3, 3, 273-285, (2014) · doi:10.14419/ijamr.v3i3.2872
[32] Fister, K. R.; Hughes Donnelly, J., Immunotherapy: an optimal control theory approach, Mathematical Biosciences and Engineering. MBE, 2, 3, 499-510, (2005) · Zbl 1180.92038 · doi:10.3934/mbe.2005.2.499
[33] Zaman, G.; Han Kang, Y.; Jung, I. H., Stability analysis and optimal vaccination of an SIR epidemic model, BioSystems, 93, 3, 240-249, (2008) · doi:10.1016/j.biosystems.2008.05.004
[34] Pontryagin, L. S.; Boltyanskii, V. G.; Gamkrelidze, R. V.; Mishchenko, E. F., The Mathematical Theory of Optimal Processes, (1962), London, UK: John Wiley & Sons, London, UK · Zbl 0102.32001
[36] Lagarias, J. C.; Reeds, J. A.; Wright, M. .; Wright, P. E., Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM Journal on Optimization, 9, 1, 112-147, (1999) · Zbl 1005.90056 · doi:10.1137/S1052623496303470
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.