×

Metapopulation model for rock-paper-scissors game: mutation affects paradoxical impacts. (English) Zbl 1397.92463

Summary: The rock-paper-scissors (RPS) game is known as one of the simplest cyclic dominance models. This game is key to understanding biodiversity. Three species, rock (\(R\)), paper (\(P\)) and scissors (\(S\)), can coexist in nature. In the present paper, we first present a metapopulation model for RPS game with mutation. Only mutation from \(R\) to \(S\) is allowed. The total population consists of spatially separated patches, and the mutation occurs in particular patches. We present reaction-diffusion equations which have two terms: reaction and migration terms. The former represents the RPS game with mutation, while the latter corresponds to random walk. The basic equations are solved analytically and numerically. It is found that the mutation induces one of three phases: the stable coexistence of three species, the stable phase of two species, and a single-species phase. The phase transitions among three phases occur by varying the mutation rate. We find the conditions for coexistence are largely changed depending on metapopulation models. We also find that the mutation induces different paradoxes in different patches.

MSC:

92D10 Genetics and epigenetics
92D25 Population dynamics (general)
92D15 Problems related to evolution
Full Text: DOI

References:

[1] Aidley, D. J., Animal migration, seminar series (society for experimental biology (great britain)) ; 13, (1981), Cambridge University Press Cambridge ; New York
[2] Berr, M.; Reichenbach, T.; Schottenloher, M.; Frey, E., Zero-one survival behavior of cyclically competing species, Phys. Rev. Lett., 102, 48102, (2009)
[3] Blasius, B.; Huppert, A.; Stone, L., Complex dynamics and phase synchronization in spatially extended ecological systems, Nature, 399, 354-359, (1999)
[4] Burrows, M. T., Modelling patch dynamics on rocky shores using deterministic cellular automata, Mar. Ecol. Prog. Ser., 167, 1-13, (1998)
[5] Buss, L. W., Competitive intransitivity and size-frequency distributions of interacting populations, Proc. Natl. Acad. Sci., 77, 5355-5359, (1980)
[6] Dingle, H.; Drake, V. A., What is migration?, Bioscience, 57, 113-121, (2007)
[7] Durrett, R.; Levin, S. A., The importance of being discrete (and spatial), Theor. Popul. Biol., (1994) · Zbl 0846.92027
[8] Frachebourg, L.; Krapivsky, P. L.; Ben-Naim, E., Segregation in a one-dimensional model of interacting species, Phys. Rev. Lett., 77, 2125-2128, (1996)
[9] Frachebourg, L.; Krapivsky, P. L.; Ben-Naim, E., Spatial organization in cyclic Lotka-Volterra systems, Phys. Rev. E, 54, 6186-6200, (1996)
[10] Frean, M.; Abraham, E. R., Rock-scissors-paper and the survival of the weakest, Proc. R. Soc. B, 268, 1323-1327, (2001)
[11] Guerra, P. A.; Gegear, R. J.; Reppert, S. M., A magnetic compass aids monarch butterfly migration, Nat. Com, 5, 4164, (2014)
[12] Hanski, I.; Gaggiotti, O. E.; ebrary, I., Ecology, genetics, and evolution of metapopulations, (2004), Elsevier Burlington, MA
[13] Hanski, I.; Gilpin, M. E., Metapopulation biology : ecology, genetics, and evolution, (1997), Academic Press San Diego, CA · Zbl 0913.92025
[14] Hardin, M. R.; Benrey, B.; Coll, M.; Lamp, W. O.; Roderick, G. K.; Barbosa, P., Arthropod pest resurgence: an overview of potential mechanisms, Crop Prot, 14, 3-18, (1995)
[15] Hashimoto, T.; Sato, K.; Ichinose, G.; Miyazaki, R.; Tainaka, K., Clustering effect on the dynamics in a spatial rock-paper-scissors system, J. Phys. Soc. Jpn., 87, 14801, (2017)
[16] Huttaker, C. B., Biological control, (1971), Plenum Press
[17] Itoh, Y., On a ruin problem with interaction, Ann. Inst. Stat. Math., 25, 635-641, (1973) · Zbl 0385.60086
[18] Kerr, B.; Riley, M. A.; Feldman, M. W.; Bohannan, B. J.M., Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors, Nature, 418, 171-174, (2002)
[19] Kirkup, B. C.; Riley, M. A., Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo, Nature, 428, 412-414, (2004)
[20] Köhler, H.-R.; Triebskorn, R., Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?, Science, 341, 759 LP-765, (2013), (80-.)
[21] Levin, S. A., Dispersion and population interactions, Am. Nat., 108, 207-228, (1974)
[22] Masuda, N.; Porter, M. A.; Lambiotte, R., Random walks and diffusion on networks, Phys. Rep, (2017) · Zbl 1377.05180
[23] Matsuoka, T.; Seno, H., Ecological balance in the native population dynamics may cause the paradox of pest control with harvesting, J. Theor. Biol., 252, 87-97, (2008) · Zbl 1398.92214
[24] McLaren, I. A., Demographic strategy of vertical migration by a marine copepod, Am. Nat., 108, 91-102, (1974)
[25] Mobilia, M., Oscillatory dynamics in rock-paper-scissors games with mutations, J. Theor. Biol., 264, 1-10, (2010) · Zbl 1406.91043
[26] Nagatani, T.; Ichinose, G.; Tainaka, K, Traffic jams induce dynamical phase transition in spatial rock-paper-scissors game, Physica A, 492, 1081-1087, (2018)
[27] Nagatani, T.; Sato, K.; Ichinose, G.; Tainaka, K., Space promotes the coexistence of species: effective medium approximation for rock-paper-scissors system, Ecol. Model., 359, 240-245, (2017)
[28] Paquin, C. E.; Adams, J., Relative fitness can decrease in evolving asexual populations of S. cerevisiae, Nature, 306, 368-371, (1983)
[29] Peabody V, G. L.; Li, H.; Kao, K. C., Sexual recombination and increased mutation rate expedite evolution of Escherichia coli in varied fitness landscapes, Nat. Commun., 8, 2112, (2017)
[30] Potts, S. G.; Imperatriz-Fonseca, V.; Ngo, H. T.; Aizen, M. A.; Biesmeijer, J. C.; Breeze, T. D.; Dicks, L. V; Garibaldi, L. A.; Hill, R.; Settele, J.; Vanbergen, A. J., Safeguarding pollinators and their values to human well-being, Nature, 540, 220-229, (2016)
[31] Provata, A.; Nicolis, G.; Baras, F., Oscillatory dynamics in low-dimensional supports: a lattice Lotka-Volterra model, J. Chem. Phys., 110, 8361-8368, (1999)
[32] Ravichandar, J. D.; Bower, A. G.; Julius, A. A.; Collins, C. H., Transcriptional control of motility enables directional movement of Escherichia coli in a signal gradient, Sci. Rep., 7, 8959, (2017)
[33] Reichenbach, T.; Mobilia, M.; Frey, E., Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model, Phys. Rev. E, 74, 51907, (2006)
[34] Reichenbach, T.; Mobilia, M.; Frey, E., Noise and correlations in a spatial population model with cyclic competition, Phys. Rev. Lett., 99, 1-4, (2007)
[35] Riede, K., The “global register of migratory species” — first results of global GIS analysis BT - biological resources and migration, (Werner, D., (2004), Springer Berlin Heidelberg, Berlin, Heidelberg), 211-218
[36] Shaw, A. K., Drivers of animal migration and implications in changing environments, Evol. Ecol., 30, 991-1007, (2016)
[37] Silva, S.; Servia, M. J.; Vieira-Lanero, R.; Cobo, F., Downstream migration and hematophagous feeding of newly metamorphosed sea lampreys (petromyzon marinus linnaeus, 1758), Hydrobiologia, 700, 277-286, (2013)
[38] Sinervo, B.; Lively, C. M., The rock-paper-scissors game and the evolution of alternative male strategies, Nature, 380, 240-243, (1996)
[39] Sugiura, K.; Hosoda, A.; Miyazaki, R.; Kanoh, Y.; Tainaka, K.; Marsh, O., Population dynamics for freshwater species with cyclic relation, Far East J. Appl. Math., 94, 247-260, (2016) · Zbl 1352.35208
[40] Szabó, G.; Arial Sznaider, G., Phase transition and selection in a four-species cyclic predator-prey model, Phys. Rev. E, 69, 31911, (2004)
[41] Szabó, G.; Czárán, T., Phase transition in a spatial Lotka-Volterra model, Phys. Rev. E, 63, 61904, (2001)
[42] Szabó, G.; Fáth, G., Evolutionary games on graphs, Phys. Rep., 446, 97-216, (2007)
[43] Szolnoki, A.; Mobilia, M.; Jiang, L.-L.; Szczesny, B.; Rucklidge, A. M.; Perc, M., Cyclic dominance in evolutionary games: a review, J. R. Soc. Interface, 11, (2014)
[44] Tainaka, K., Lattice model for the Lotka-Volterra system, J. Phys. Soc. Jpn., 57, 2588-2590, (1988)
[45] Tainaka, K., Stationary pattern of vortices or strings in biological systems: lattice version of the Lotka-Volterra model, Phys. Rev. Lett., 63, 2688-2691, (1989)
[46] Tainaka, K., Paradoxical effect in a three-candidate voter model, Phys. Lett. A, 176, 303-306, (1993)
[47] Tainaka, K., Indirect effect in cyclic voter models, Phys. Lett. A, 207, 53-57, (1995) · Zbl 1020.82606
[48] Tainaka, K.; Fukazawa, S., Spatial pattern in a chemical reaction system: prey and predator in the position-fixed limit, J. Phys. Soc. Jpn., 61, 1891-1894, (1992)
[49] Tainaka, K.; Itoh, Y., Patch dynamics based on Prisoner’s dilemma game: superiority of Golden rule, Ecol. Modell., 150, 295-307, (2002)
[50] Tilman, D.; Lehman, C. L.; Yin, C., Habitat destruction, dispersal, and deterministic extinction in competitive communities, Am. Nat., 149, 407-435, (1997)
[51] Tsekouras, G. A.; Provata, A., Fractal properties of the lattice Lotka-Volterra model, Phys. Rev. E, 65, 16204, (2001)
[52] Watterson, G. A., Motoo Kimura’s use of diffusion theory in population genetics, Theor. Popul. Biol., 49, 154-188, (1996) · Zbl 0845.92012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.