×

A spatial physiological model for p53 intracellular dynamics. (English) Zbl 1397.92185

Summary: In this paper we design and analyse a physiologically based model representing the accumulation of protein p53 in the nucleus after triggering of ATM by DNA damage. The p53 protein is known to have a central role in the response of the cell to cytotoxic or radiotoxic insults resulting in DNA damage. A reasonable requirement for a model describing intracellular signalling pathways is taking into account the basic feature of eukaryotic cells: the distinction between nucleus and cytoplasm. Our aim is to show, on a simple reaction network describing p53 dynamics, how this basic distinction provides a framework which is able to yield expected oscillatory dynamics without introducing either positive feedbacks or delays in the reactions. Furthermore we prove that oscillations appear only if some spatial constraints are respected, e.g. if the diffusion coefficients correspond to known biological values. Finally we analyse how the spatial features of a cell influence the dynamic response of the p53 network to DNA damage, pointing out that the protein oscillatory dynamics is indeed a response that is robust towards changes with respect to cellular environments. Even if we change the cell shape or its volume or better its ribosomal distribution, we observe that DNA damage yields sustained oscillations of p53.

MSC:

92C40 Biochemistry, molecular biology
92C37 Cell biology
34C23 Bifurcation theory for ordinary differential equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Bar-Or, R. L.; Maya, R.; Segel, L. A.; Alon, U.; Levine, A. J.; Oren, M., Generation of oscillations by the p53–mdm2 feedback loopa theoretical and experimental study, Proc. Natl. Acad. Sci. USA, 97, 21, 11250-11255, (2000), URL \(\langle\)http://dx.doi.org/10.1073/pnas.210171597\(\rangle\)
[2] Cangiani, A., Natalini, R. 2010. A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theor. Biol. 267 (4), 614-25.; Cangiani, A., Natalini, R. 2010. A spatial model of cellular molecular trafficking including active transport along microtubules. J. Theor. Biol. 267 (4), 614-25. · Zbl 1414.92132
[3] Carr, A. M., Cell cycle, piecing together the p53 puzzle, Science, 287, 5459, 1765-1766, (2000)
[4] Ciliberto, A.; Novak, B.; Tyson, J. J., Steady states and oscillations in the p53/mdm2 network, Cell Cycle, 4, 3, 488-493, (2005)
[5] Dange, T.; Grünwald, D.; Grünwald, A.; Peters, R.; Kubitscheck, U., Autonomy and robustness of translocation through the nuclear pore complexa single-molecule study, J. Cell Biol., 183, 1, 77-86, (2008)
[6] Derheimer, F. A.; Kastan, M. B., Multiple roles of ATM in monitoring and maintaining DNA integrity, FEBS Lett., 584, 17, 3675-3681, (2010)
[7] Dohoney, K. M.; Guillerm, C.; Whiteford, C.; Elbi, C.; Lambert, P. F.; Hager, G. L.; Brady, J. N., Phosphorylation of p53 at serine 37 is important for transcriptional activity and regulation in response to DNA damage, Oncogene, 23, 1, 49-57, (2004)
[8] Fang, S.; Jensen, J. P.; Ludwig, R. L.; Vousden, K. H.; Weissman, A. M., Mdm2 is a ring finger-dependent ubiquitin protein ligase for itself and p53, J. Biol. Chem., 275, 12, 8945-8951, (2000)
[9] Feng, L.; Lin, T.; Uranishi, H.; Gu, W.; Xu, Y., Functional analysis of the roles of posttranslational modifications at the p53 c terminus in regulating p53 stability and activity, Mol. Cell Biol., 25, 13, 5389-5395, (2005)
[10] Freedman, D. A.; Levine, A. J., Nuclear export is required for degradation of endogenous p53 by mdm2 and human papillomavirus E6, Mol. Cell Biol., 18, 12, 7288-7293, (1998)
[11] Freedman, D. A.; Wu, L.; Levine, A. J., Functions of the mdm2 oncoprotein, Cell Mol. Life Sci., 55, 1, 96-107, (1999)
[12] Fusco, D.; Accornero, N.; Lavoie, B.; Shenoy, S. M.; Blanchard, J. M.; Singer, R. H.; Bertrand, E., Single mrna molecules demonstrate probabilistic movement in living Mammalian cells, Curr. Biol., 13, 2, 161-167, (2003)
[13] Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U. 2006. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2 (2006) 0033.; Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U. 2006. Oscillations and variability in the p53 system. Mol. Syst. Biol. 2 (2006) 0033.
[14] Giannakakou, P.; Nakano, M.; Nicolaou, K. C.; O’Brate, A.; Yu, J.; Blagosklonny, M. V.; Greber, U. F.; Fojo, T., Enhanced microtubule-dependent trafficking and p53 nuclear accumulation by suppression of microtubule dynamics, Proc. Natl. Acad. Sci. USA, 99, 16, 10855-10860, (2002), URL \(\langle\)http://dx.doi.org/10.1073/pnas.132275599\(\rangle\)
[15] Gordon, K.; van Leeuween, I.; Lain, S.; Chaplain, M., Spatio-temporal modelling of the p53–mdm2 oscillatory system, Math. Model. Nat. Phenom., 4, 3, 97-116, (2009) · Zbl 1173.35325
[16] Grünwald, D.; Singer, R. H.; Rout, M., Nuclear export dynamics of RNA–protein complexes, Nature, 475, 7356, 333-341, (2011)
[17] Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M., Mdm2 promotes the rapid degradation of p53, Nature, 387, 6630, 296-299, (1997)
[18] Hill, A., Proceedings of the physiological society, J. Physiol., 40, i-vii, (1910), arXiv:http://jp.physoc.org/content/40/supplement/i.full.pdf+html. URL \(\langle\)http://jp.physoc.org/content/40/supplement/i.short\(\rangle\)
[19] Hong, S.; Wang, Y.-N.; Yamaguchi, H.; Sreenivasappa, H.; Chou, C.-K.; Tsou, P.-H.; Hung, M.-C.; Kameoka, J., Measurement of protein 53 diffusion coefficient in live hela cells using raster image correlation spectroscopy (RICS), J. Biomater. Nanobiotechnol., 1, 1, 31-36, (2010)
[20] Hundsdorfer, W.; Verwer, J., Numerical solution of time-dependent advection–diffusion–reaction equations, Springer Series in Computational Mathematics, vol. 33, (2003), Springer-Verlag · Zbl 1030.65100
[21] James, J. S.; Keener, P., Mathematical physiology, (1998), Springer · Zbl 0913.92009
[22] Kedem, O.; Katchalsky, A., Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 27, 2, 229-246, (1958)
[23] Kuznetsov, Y. A., Elements of applied bifurcation theory, (2004), Springer-Verlag · Zbl 1082.37002
[24] Lahav, G.; Rosenfeld, N.; Sigal, A.; Geva-Zatorsky, N.; Levine, A. J.; Elowitz, M. B.; Alon, U., Dynamics of the p53–mdm2 feedback loop in individual cells, Nat. Genet., 36, 2, 147-150, (2004), URL \(\langle\)http://dx.doi.org/10.1038/ng1293\(\rangle\)
[25] Lakin, N. D.; Jackson, S. P., Regulation of p53 in response to DNA damage, Oncogene, 18, 53, 7644-7655, (1999)
[26] Lavin, M. F.; Kozlov, S., Atm activation and DNA damage response, Cell Cycle, 6, 8, 931-942, (2007)
[27] Liang, S. H.; Clarke, M. F., Regulation of p53 localization, Eur. J. Biochem., 268, 10, 2779-2783, (2001)
[28] Ma, L.; Wagner, J.; Rice, J. J.; Hu, W.; Levine, A. J.; Stolovitzky, G. A., A plausible model for the digital response of p53 to DNA damage, Proc. Natl. Acad. Sci. USA, 102, 40, 14266-14271, (2005), URL \(\langle\)http://dx.doi.org/10.1073/pnas.0501352102\(\rangle\)
[29] Marchenko, N. D.; Hanel, W.; Li, D.; Becker, K.; Reich, N.; Moll, U. M., Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding, Cell Death Differ., 17, 2, 255-267, (2010), URL \(\langle\)http://dx.doi.org/10.1038/cdd.2009.173\(\rangle\)
[30] Mayo, L. D.; Donner, D. B., A phosphatidylinositol 3-kinase/akt pathway promotes translocation of mdm2 from the cytoplasm to the nucleus, Proc. Natl. Acad. Sci. USA, 98, 20, 11598-11603, (2001)
[31] Michael, D.; Oren, M., The p53–mdm2 module and the ubiquitin system, Semin. Cancer Biol., 13, 1, 49-58, (2003)
[32] Monk, N. A.M., Oscillatory expression of hes1, p53, and NF-kappab driven by transcriptional time delays, Curr. Biol., 13, 16, 1409-1413, (2003)
[33] Novák, B.; Tyson, J. J., Design principles of biochemical oscillators, Nat. Rev. Mol. Cell Biol., 9, 12, 981-991, (2008)
[34] Ouattara, D. A.; Abou-Jaoudé, W.; Kaufman, M., From structure to dynamicsfrequency tuning in the p53–mdm2 network. II differential and stochastic approaches, J. Theor. Biol., 264, 4, 1177-1189, (2010), URL \(\langle\)http://dx.doi.org/10.1016/j.jtbi.2010.03.031\(\rangle\) · Zbl 1406.92250
[35] Perko, L., Differential equations and dynamical systems, (1996), Springer-Verlag · Zbl 0854.34001
[36] Pu, T.; Zhang, X.-P.; Liu, F.; Wang, W., Coordination of the nuclear and cytoplasmic activities of p53 in response to DNA damage, Biophys. J., 99, 6, 1696-1705, (2010)
[37] Rajagopalan, S.; Huang, F.; Fersht, A. R., Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53, Nucleic Acids Res., 39, 6, 2294-2303, (2011)
[38] Rangamani, P.; Iyengar, R., Modelling spatio-temporal interactions within the cell, J. Biosci., 32, 1, 157-167, (2007)
[39] Reichelt, R.; Holzenburg, A.; Buhle, E. L.; Jarnik, M.; Engel, A.; Aebi, U., Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components, J. Cell Biol., 110, 4, 883-894, (1990)
[40] Reich, N. C.; Oren, M.; Levine, A. J., Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53, Mol. Cell Biol., 3, 12, 2143-2150, (1983)
[41] Ribbeck, K.; Görlich, D., Kinetic analysis of translocation through nuclear pore complexes, EMBO J., 20, 6, 1320-1330, (2001)
[42] Roth, D. M.; Moseley, G. W.; Glover, D.; Pouton, C. W.; Jans, D. A., A microtubule-facilitated nuclear import pathway for cancer regulatory proteins, Traffic, 8, 6, 673-686, (2007), URL \(\langle\)http://dx.doi.org/10.1111/j.1600-0854.2007.00564.x\(\rangle\)
[43] Saito, S.; Goodarzi, A. A.; Higashimoto, Y.; Noda, Y.; Lees-Miller, S. P.; Appella, E.; Anderson, C. W., ATM mediates phosphorylation at multiple p53 sites, including ser(46), in response to ionizing radiation, J. Biol. Chem., 277, 15, 12491-12494, (2002)
[44] Segel, L.A., Slemrod, M. 1989. The quasi-steady state assumption: a case study in perturbation. SIAM Rev. 31(3), 446-477.; Segel, L.A., Slemrod, M. 1989. The quasi-steady state assumption: a case study in perturbation. SIAM Rev. 31(3), 446-477. · Zbl 0679.34066
[45] Seksek, O.; Biwersi, J.; Verkman, A. S., Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus, J. Cell Biol., 138, 1, 131-142, (1997)
[46] Shav-Tal, Y.; Darzacq, X.; Shenoy, S. M.; Fusco, D.; Janicki, S. M.; Spector, D. L.; Singer, R. H., Dynamics of single mrnps in nuclei of living cells, Science, 304, 5678, 1797-1800, (2004)
[47] Shu, K.-X.; Li, B.; Wu, L.-X., The p53 networkp53 and its downstream genes, Colloids Surf. B Biointerfaces, 55, 1, 10-18, (2007), URL \(\langle\)http://dx.doi.org/10.1016/j.colsurfb.2006.11.003\(\rangle\)
[48] Smith, A. E.; Slepchenko, B. M.; Schaff, J. C.; Loew, L. M.; Macara, I. G., Systems analysis of ran transport, Science, 295, 5554, 488-491, (2002)
[49] Stommel, J. M.; Marchenko, N. D.; Jimenez, G. S.; Moll, U. M.; Hope, T. J.; Wahl, G. M., A leucine-rich nuclear export signal in the p53 tetramerization domainregulation of subcellular localization and p53 activity by NES masking, EMBO J., 18, 6, 1660-1672, (1999), URL \(\langle\)http://dx.doi.org/10.1093/emboj/18.6.1660\(\rangle\)
[50] Sturrock, M., Terry, A.J., Xirodimas, D.P., Thompson, A.M., Chaplain, M.A.J. 2012. Influence of the nuclear membrane, active transport, and cell shape on the hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol., 74(7), 1531-1579.; Sturrock, M., Terry, A.J., Xirodimas, D.P., Thompson, A.M., Chaplain, M.A.J. 2012. Influence of the nuclear membrane, active transport, and cell shape on the hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol., 74(7), 1531-1579. · Zbl 1312.92021
[51] Sturrock, M.; Terry, A. J.; Xirodimas, D. P.; Thompson, A. M.; Chaplain, M. A.J., Spatio-temporal modelling of the hes1 and p53–mdm2 intracellular signalling pathways, J. Theor. Biol., 273, 1, 15-31, (2011) · Zbl 1405.92085
[52] Terry, A. J.; Chaplain, M. A.J., Spatio-temporal modelling of the \(\operatorname{nf} \operatorname{-} \kappa \operatorname{b}\) intracellular signalling pathwaythe roles of diffusion, active transport, and cell geometry, J. Theor. Biol., 290, 7-26, (2011) · Zbl 1397.92235
[53] Vierboom, M. P.; Zwaveling, S.; Bos, G. M.J.; Ooms, M.; Krietemeijer, G. M.; Melief, C. J.; Offringa, R., High steady-state levels of p53 are not a prerequisite for tumor eradication by wild-type p53-specific cytotoxic t lymphocytes, Cancer Res., 60, 19, 5508-5513, (2000)
[54] Vogelstein, B.; Lane, D.; Levine, A. J., Surfing the p53 network, Nature, 408, 6810, 307-310, (2000)
[55] Wee, K. B.; Surana, U.; Aguda, B. D., Oscillations of the p53–akt networkimplications on cell survival and death, PLoS One, 4, 2, e4407, (2009)
[56] Wu, X.; Bayle, J. H.; Olson, D.; Levine, A. J., The p53–mdm-2 autoregulatory feedback loop, Genes Dev., 7, 7A, 1126-1132, (1993)
[57] Xirodimas, D. P.; Stephen, C. W.; Lane, D. P., Cocompartmentalization of p53 and mdm2 is a major determinant for mdm2-mediated degradation of p53, Exp. Cell Res., 270, 1, 66-77, (2001)
[58] Zhang, Y.; Xiong, Y., A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation, Science, 292, 5523, 1910-1915, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.