×

How to asses, visualize and compare the anisotropy of linear structures reconstructed from optical sections – a study based on histopathological quantification of human brain microvessels. (English) Zbl 1397.92113

Summary: Three-dimensional analyses of the spatial arrangement, spatial orientation and preferential directions of systems of fibers are frequent tasks in many scientific fields, including the textile industry, plant biology and tissue modeling. In biology, systems of oriented and branching lines are often used to represent the three-dimensional directionality and topology of microscopic blood vessels supplying various organs. In our study, we present a novel \(p(\chi^2)\) (chi-square) method for evaluating the anisotropy of line systems that involves comparing the observed length densities of lines with the discrete uniform distribution of an isotropic line system with the \(\chi^2\)-test. Using this method in our open source software, we determined the rose of directions, preferential directions and level of anisotropy of linear systems representing the microscopic blood vessels in samples of various regions from human brains (cortex, subcortical gray matter and white matter). The novel method was compared with two other methods used for anisotropy quantification (ellipsoidal and fractional anisotropy). All three methods detected different levels of anisotropy of blood microvessels in human brain. The microvascular bed in the cortex was closer to an isotropic network, while the microvessels supplying the white matter appeared to be an anisotropic and direction-sensitive system. All three methods were able to determine the differences between various brain regions. The advantage of our \(p(\chi^2)\) method is its high correlation with the number of preferential directions of the line system. However, the software, named esofspy, is able to calculate all three of the measures of anisotropy compared and documented in this paper, thus making the methods freely available to the scientific community.

MSC:

92C20 Neural biology
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

spatstat; gensei; Python
Full Text: DOI

References:

[1] Altman, D.A.; Bland, J.M., Statistics notes—absence of evidence is not evidence of absence, Bmj, 311, 485, (1995)
[2] Aouar, L.; Chebli, Y.; Geitmann, A., Morphogenesis of complex plant cell shape: the mechanical role of crystalline cellulose in growing pollen tubes, Sex. plant reprod., 23, 15-27, (2010)
[3] Bullitt, E.; Rahman, F.N.; Smith, J.K.; Kim, E.; Zeng, D.; Katz, L.M.; Marks, B.L., The effect of exercise on the cerebral vasculature of healthy aged subjects as visualized by MR angiography, Ajnr, 30, 1857-1863, (2009)
[4] Beneš, V.; Gokhale, A.M., Planar anisotropy revisited, Kybernetika, 36, 149-164, (2000) · Zbl 1249.60185
[5] Baddeley, A.; Turner, R., Spatstat: an R package for analyzing spatial point patterns, Jss, 12, 1-42, (2005)
[6] Boehm, B.; Westerberg, H.; Lesnicar-Pucko, G.; Raja, S.; Rautschka, M.; Cotterell, J.; Swoger, J.; Sharpe, J., The role of spatially controlled cell proliferation in limb bud morphogenesis, Plos biol., 8, e1000420, (2010)
[7] Cassot, F.; Lauwers, F.; Fouard, C.; Prohaska, S.; Lauwers-Cances, V., A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex, Microcirculation, 13, 1-18, (2006)
[8] Čebašek, V.; Eržen, I.; Vyhnal, A.; Janáček, J.; Ribarič, S.; Kubínová, L., The estimation error of skeletal muscle capillary supply is significantly reduced by 3D method, Mvr, 779, 40-46, (2010)
[9] Cimrman, R.; Rohan, E., On identification of the arterial model parameters from experiments applicable:in vivo, Math. comput. simulat., 80, 1232-1245, (2010) · Zbl 1193.92008
[10] Ding, G.; Jiang, Q.; Li, L.; Zhang, L.; Zhang, Z.G.; Ledbetter, K.A.; Panda, S.; Chopp, M., Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats, Jcbfm, 28, 1440-1448, (2008)
[11] Dryden, I.L.; Koloydenko, A.; Zhou, D., Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging, Ann. appl. stat., 3, 1102-1123, (2009) · Zbl 1196.62063
[12] Dorph-Petersen, K.A.; Nyengaard, J.R.; Gundersen, H.J.G., Tissue shrinkage and unbiased stereological estimation of particle number and size, J. microsc., 204, 232-246, (2001)
[13] Dumais, J.; Shaw, S.L.; Steele, Ch.R.; Long, S.R.; Ray, P.M., An anisotropic-viscoelastic model of plant cells morphogenesis by tip growth, Int. J. dev. biol., 50, 209-222, (2006)
[14] Dado, D.; Levenberg, S., Cell-scaffold mechanical interplay within engineering tissue, Sem. cell dev. biol., 20, 656-664, (2009)
[15] Emons, A.M.C.; Mulder, B.M., The making of the architecture of the plant cell wall: how cells exploit geometry, Proc. natl. acad. sci. USA, 95, 7215-7219, (1998)
[16] Giachetti, A.; Zanetti, G., Vascular modeling from volumetric diagnostic data: a review, Cmir, 2, 415-423, (2006)
[17] Grinberg, L.T.; Amaro, E.; da Silva, A.V.; da Silva, R.E.; Sato, J.R.; dos Santos, D.D.; de Paula Pacheco, S.; Heinsen, H., Improved detection of incipient vascular changes by a biotechnological platform combining post mortem MRI in situ with neuropathology, J. neurol. sci., 283, 2-8, (2009)
[18] Gardner, J.L., Is cortical vasculature functionally organized?, Neuroimage, 49, 1953-1956, (2010)
[19] Gensei, 2010. 〈http://code.google.com/p/gensei/〉; Gensei, 2010. 〈http://code.google.com/p/gensei/〉
[20] Gutkowski, P.; Jensen, E.B.; Kiderlen, M., Directional analysis of digitized three-dimensional images by configuration counts, J. microsc., 216, 175-185, (2004)
[21] Geitmann, A.; Ortega, J.K.E., Mechanics and modelling of plant cell growth, Trends plant. sci., 14, 467-478, (2009)
[22] Guan, Y.; Sherman, M.; Calvin, J.A., Assessing isotropy for spatial point processes, Biometrics, 62, 119-125, (2006) · Zbl 1091.62096
[23] Howard, C.V.; Reed, M.G., Unbiased stereology. three-dimensional measurement in microscopy, (1998), Springer New York
[24] Holzapfel, G.A.; Gasser, T.C., A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications, Comput. method. appl. mech., 190, 4379-4403, (2001)
[25] Holzapfel, G.A., Determination of material models for arterial walls from uniaxial extension tests and histological structure, J. theor. biol., 238, 290-302, (2006) · Zbl 1445.92024
[26] Hou, Q.; Grijpma, D.W.; Feijen, J., Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique, Biomaterials, 24, 1937-1947, (2003)
[27] Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage, Biomaterials, 21, 2529-2543, (2000)
[28] Inoue, K., A new approach to the quantitative analysis of the vascular architecture and its application to the cerebral cortex of the reeler mouse, Hokkaido J. med. sci., 65, 493-509, (2010)
[29] Janácek, J.; Cebasek, V.; Kubínová, L.; Ribaric, S.; Erzen, I., 3D visualization and measurement of capillaries supplying metabolically different fiber types in the rat extensor digitorum longus muscle during denervation and reinnervation, J. histochem. cytochem., 57, 437-447, (2009)
[30] Jirkovská, M.; Kubínová, L.; Janácek, J.; Moravcová, M.; Krejcí, V.; Karen, P., Topological properties and spatial organization of villous capillaries in normal and diabetic placentas, J. vasc. res., 39, 268-278, (2002)
[31] Jirkovská, M.; Janácek, J.; Kaláb, J.; Kubínová, L., Three-dimensional arrangement of the capillary bed and its relationship to microrheology in the terminal villi of normal term placenta, Placenta, 29, 892-897, (2008)
[32] Josso, B.; Burton, D.R.; Lalor, M.J., Texture orientation and anisotropy calculation by Fourier transform and principal component analysis, Mech. syst. signal process., 19, 1152-1161, (2005)
[33] Kiselev, V.G.; Strecker, R.; Ziyeh, S.; Speck, O.; Hennig, J., Vessel size imaging in humans, Magnet. reson. med., 53, 553-563, (2005)
[34] Konerding, M.A.; Miodonski, A.J.; Lametschwandtner, A., Microvascular corrosion casting in the study of tumor vascularity: a review, Scanning microsc., 9, 1233-1243, (1995)
[35] Kubínová, L.; Janácek, J.; Ribaric, S.; Cebasek, V.; Erzen, I., Three-dimensional study of the capillary supply of skeletal muscle fibres using confocal microscopy, J. muscle res. cell. motil., 22, 217-227, (2001)
[36] Kubínová, L.; Janáček, J., Confocal microscopy and stereology: estimating volume, number, surface area and length by virtual test probes applied to three-dimensional images, Microsc. res. tech., 53, 425-435, (2001)
[37] Kärkkäinen, S.; Jensen, E.B.V., Estimation of fibre orientation from digital images, Image anal. stereol., 20, 199-202, (2001) · Zbl 0986.62109
[38] Kiderlen, M.; Pfrang, A., Algorithms to estimate the rose of directions of a spatial fibre system, J. microsc., 219, 50-60, (2005)
[39] Kachlik, D.; Baca, V.; Stingl, J., The spatial arrangement of the human large intestinal wall blood circulation, J. anat., 216, 335-343, (2010)
[40] Kiderlen, M.; Jensen, E.B.V., Estimation of the directional measure of planar random sets by digitization, Adv. appl. probab., 35, 583-602, (2003) · Zbl 1040.60008
[41] Kochová, P.; Cimrman, R.; Rohan, E., Orientation of smooth muscle cells with application in mechanical model of gastropod tissue, ACM, 3, 75-86, (2009)
[42] Kim, S.-S.; Park, M.S.; Jeon, O.; Choi, Ch.Y.; Kim, B.-S., Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials, 27, 1399-1409, (2006)
[43] Lametschwandtner, A.; Minnich, B.; Kachlik, D.; Setina, M.; Stingl, J., Three-dimensional arrangement of the vasa vasorum in explanted segments of the aged human great saphenous vein: scanning electron microscopy and three-dimensional morphometry of vascular corrosion casts, Anat. rec. A discov. mol. cell. evol. biol., 281, 1372-1382, (2004)
[44] Lametschwandtner, A.; Minnich, B.; Stöttinger, B.; Krautgartner, W.D., Analysis of microvascular trees by means of scanning electron microscopy of vascular casts and 3D-morphometry, Ital. J. anat. embryol., 110, 87-95, (2005)
[45] Lim, J.Y.; Donahue, H.J., Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic pattering, Tissue eng., 13, 1879-1891, (2007)
[46] Lux, J.; Delisée, Ch.; Thribault, X., 3D characterization of wood based fibrous materials: an application, Image anal. stereol., 25, 25-35, (2006)
[47] Lhotáková, Z.; Albrechtová, J.; Janácek, J.; Kubínová, L., Advantages and pitfalls of using free-hand sections of frozen needles for three-dimensional analysis of mesophyll by stereology and confocal microscopy, J. microsc., 232, 56-63, (2008)
[48] Monson, K.L.; Barbaro, N.M.; Manley, G.T., Biaxial response of passive human cerebral arteries, Ann. biomed. eng., 36, 2028-2041, (2008)
[49] Mathieu, L.M.; Mueller, T.L.; Bourban, P.-E.; Pioletti, D.P.; Müller, R.; Månson, J.-A.E., Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering, Biomaterials, 27, 905-916, (2006)
[50] Mecke, J., Formulas for stationary planar fibre processes: III. intersections with fibre systems, Statistics, 12, 201-210, (1981) · Zbl 0472.60016
[51] Mattfeld, T., Explorative statistical analysis of planar point processes in microscopy, J. microsc., 220, 131-139, (2005)
[52] Mathieu, O.; Cruz-Orive, L.-M.; Hoppeler, H.; Weibel, E., Estimating length density and quantifying anisotropy in skeletal muscle capillaries, J. microsc., 131, 131-146, (1983)
[53] Mayhew, T.M.; Jairam, I.C., Stereological comparison of 3D spatial relationships involving villi and intervillous pores in human placentas from control and diabetic pregnancies, J. anat., 197, 263-274, (2000)
[54] Mayhew, T.M.; Lucocq, J.M.; Griffiths, G., Relative labelling index: a novel stereological approach to test for non-random immunogold labelling of organelles and membranes on transmission electron microscopy thin sections, J. microsc., 205, 153-164, (2002)
[55] Mayhew, T.M.; Mühlfeld, Ch.; Vanhecke, D.; Ochs, M., A review of recent methods for efficiently quantifying immunogold and other nanoparticles using TEM sections through cells, tissues and organs, Ann. anat., 191, 153-170, (2009)
[56] Pubmed, 2010. 〈http://www.ncbi.nlm.nih.gov/pubmed, viewed 2010/11/16〉; Pubmed, 2010. 〈http://www.ncbi.nlm.nih.gov/pubmed, viewed 2010/11/16〉
[57] Park, S.-H.; Masamoto, K.; Hendrich, K.; Kanno, I.; Kim, S.-G., Imaging brain vasculature with BOLD microscopy: MR detection limits determined by in vivo two-photon microscopy, Magnet. reson. med., 59, 855-865, (2008)
[58] Prokešová, M., Bayersian MCMC estimation of the rose of directions, Kybernetika, 39, 703-717, (2003) · Zbl 1248.62039
[59] Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P., Numerical recipes in C, the art of scientific computing, (1992), Cambridge University Press Cambridge · Zbl 0845.65001
[60] Python, 2001. 〈http://www.python.org/〉; Python, 2001. 〈http://www.python.org/〉 · Zbl 0967.68026
[61] Pruyne, D.; Bretscher, A., Polarization of cell growth in yeast. I. establishment and maintenance of polarity states, J. cell sci., 113, 365-375, (2000)
[62] Rataj, J.; Saxl, I., Analysis of planar anisotropy by means of the Steiner compact, J. appl. probab., 26, 460-503, (1989)
[63] Romeis, B., Mikroskopische technik, (1989), Urban & Schwarzenberg München
[64] Rieder, M.J.; O’Drobinak, D.M.; Greene, A.S., A computerized method for determination of microvascular density, Mvr, 49, 180-189, (1995)
[65] Ranucci, C.S.; Kumar, A.; Batra, S.P.; Moghe, P.V., Control of hepatocyte function on collagen foams: sizing matrix pores toward selective induction of 2-D and 3-D cellular morphogenesis, Biomaterials, 21, 783-793, (2000)
[66] Schlimper, C.; Nemitz, O.; Dorenbeck, U.; Scorzin, J.; Whitaker, R.; Tasdizen, T.; Rumpf, M.; Schaller, K., Restoring three-dimensional magnetic resonance angiography images with Mean curvature motion, Neurol. res., 32, 87-93, (2010)
[67] Schlageter, K.E.; Molnar, P.; Lapin, G.D.; Groothuis, D.R., Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties, Microvasc. res., 58, 312-328, (1999)
[68] Salu, K.J.; Knaapen, M.W.M.; Bosmans, J.M.; Vrints, Ch.J.; Bult, H., A three-dimesional quatitative analysis of restenosis parameters after ballon angioplasty: comparision between semi-automatic computer-assisted planimetry and stereology, J. vas. res., 39, 437-446, (2002)
[69] Spodarev, E., On the rose of intersections of stationary flat processes, Adv. app. prob., 33, 584-599, (2001) · Zbl 0988.60003
[70] Spodarev, E., Isoperimetric problems and roses of neighborhood for stationary flat processes, Math. nachr., 251, 88-100, (2003) · Zbl 1021.60006
[71] Stoyan, D.; Kendall, W.S.; Mecke, J., Stochastic geometry and its applications, (1996), John Wiley & Sons Ltd New York
[72] Sundararaghavan, V.; Zabaras, N., A dynamic material library for the representation of single-phase polyhedral microstructures, Acta mater., 52, 4111-4119, (2004)
[73] (), (Chapter 15)
[74] Tonar, Z.; Kochová, P.; Cimrman, R.; Witter, K.; Janáček, J.; Rohan, V., Microstructure oriented modelling of hierarchically perfused porous media for cerebral blood flow evaluation, Key eng. mater., 465, 286-289, (2011)
[75] Tunak, M.; Linka, A., Analysis of planar anisotropy of fibre systems by using 2D Fourier transform, Fibres text. east. eur., 15, 86-90, (2007)
[76] Wejrzanowski, T.; Spychalski, W.; Różniatowski, K.; KurzydŁowski, K., Image based analysis of complex microstructures of engineering materials, Int. J. appl. math. comput. sci., 18, 33-39, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.