×

Algebraic formulation and Nash equilibrium of competitive diffusion games. (English) Zbl 1397.91053

Summary: This paper investigates the algebraic formulation and Nash equilibrium of competitive diffusion games by using semi-tensor product method, and gives some new results. Firstly, an algebraic formulation of competitive diffusion games is established via the semi-tensor product of matrices, based on which all the fixed points (the end of the diffusion process) are obtained. Secondly, using the algebraic formulation, a necessary and sufficient condition is presented for the verification of pure-strategy Nash equilibrium. Finally, an illustrative example is given to demonstrate the effectiveness of the obtained new results.

MSC:

91A15 Stochastic games, stochastic differential games
91A43 Games involving graphs
91D30 Social networks; opinion dynamics
Full Text: DOI

References:

[1] Alon, N; Feldman, M; Procaccia, AD; Tennenholtz, M, A note on competitive diffusion through social networks, Inf Process Lett, 110, 221-225, (2010) · Zbl 1197.91057 · doi:10.1016/j.ipl.2009.12.009
[2] Bharathi S, Kempe D, Salek M (2007) Competitive influence maximization in social networks. In: Proceedings of international conference on internet and network economics, pp 306-311 · Zbl 1414.91014
[3] Chen, H; Sun, J, Global stability and stabilization of switched Boolean network with impulsive effects, Appl Math Comput, 224, 625-634, (2013) · Zbl 1334.94108
[4] Cheng D, Qi H, Li Z (2011) Analysis and control of boolean networks: a semi-tensor product approach. Springer, London · Zbl 1209.93001 · doi:10.1007/978-0-85729-097-7
[5] Cheng, D, On finite potential games, Automatica, 50, 1793-1801, (2014) · Zbl 1296.93069 · doi:10.1016/j.automatica.2014.05.005
[6] Cheng, D; Xu, T; Qi, H, Evolutionarily stable strategy of networked evolutionary games, IEEE Trans Neural Netw Learn Syst, 25, 1335-1345, (2014) · doi:10.1109/TNNLS.2013.2293149
[7] Cheng, D; He, F; Qi, H; Xu, T, Modeling, analysis and control of networked evolutionary games, IEEE Trans Autom Control, 60, 2402-2415, (2015) · Zbl 1360.91026 · doi:10.1109/TAC.2015.2404471
[8] Etesami, SR; Basar, T, Complexity of equilibrium in competitive diffusion games on social networks, Automatica, 68, 100-110, (2016) · Zbl 1414.91071 · doi:10.1016/j.automatica.2016.01.063
[9] Fornasini, E; Valcher, ME, Observability, reconstructibility and state observers of Boolean control networks, IEEE Trans Autom Control, 58, 1390-1401, (2013) · Zbl 1369.93101 · doi:10.1109/TAC.2012.2231592
[10] Ghaderi J, Srikant R (2013) Opinion dynamics in social networks: a local interaction game with stubborn agents. In: Proccedings of 2013 American control conference, pp 1982-1987 · Zbl 1414.91071
[11] Goyal S, Kearns M (2012) Competitive contagion in networks. In: Proceedings of the 44th symposium on theory of computing, pp 759-774 · Zbl 1286.91030
[12] Guo, P; Wang, Y; Li, H, Algebraic formulation and strategy optimization for a class of evolutionary network games via semi-tensor product method, Automatica, 49, 3384-3389, (2013) · Zbl 1315.93027 · doi:10.1016/j.automatica.2013.08.008
[13] Han, M; Liu, Y; Tu, Y, Controllability of Boolean control networks with time delays both in states and inputs, Neurocomputing, 129, 467-475, (2014) · doi:10.1016/j.neucom.2013.09.012
[14] Jadbabaie, A; Lin, J; Morse, AS, Coordination of groups of mobile autonomous agents using nearest neighbor, IEEE Trans Autom Control, 48, 1675-1675, (2003) · Zbl 1364.93146 · doi:10.1109/TAC.2003.817537
[15] Khanafer A, Basar T (2014) Information spread in networks: control, games, and equilibria. In: 2014 information theory and applications workshop, pp 1-10
[16] Laschov, D; Margaliot, M, Minimum-time control of Boolean networks, SIAM J Control Optim, 51, 2869-2892, (2013) · Zbl 1276.49013 · doi:10.1137/110844660
[17] Li, H; Wang, Y, Controllability analysis and control design for switched Boolean networks with state and input constraints, SIAM J Control Optim, 53, 2955-2979, (2015) · Zbl 1320.93022 · doi:10.1137/120902331
[18] Li, H; Xie, L; Wang, Y, On robust control invariance of Boolean control networks, Automatica, 68, 392-396, (2016) · Zbl 1334.93057 · doi:10.1016/j.automatica.2016.01.075
[19] Liu, X; Zhu, J, On potential equations of finite games, Automatica, 68, 245-253, (2016) · Zbl 1414.91014 · doi:10.1016/j.automatica.2016.01.074
[20] Liu, Y; Chen, H; Lu, J; Wu, B, Controllability of probabilistic Boolean control networks based on transition probability matrices, Automatica, 52, 340-345, (2015) · Zbl 1309.93026 · doi:10.1016/j.automatica.2014.12.018
[21] Li, H; Wang, Y; Xie, L, Output tracking control of Boolean control networks via state feedback: constant reference signal case, Automatica, 59, 54-59, (2015) · Zbl 1326.93068 · doi:10.1016/j.automatica.2015.06.004
[22] Lu, J; Li, H; Liu, Y; Li, F, A survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Control Theory Appl, (2017) · doi:10.1049/iet-cta.2016.1659
[23] Meng, M; Feng, J, Topological structure and the disturbance decoupling problem of singular Boolean networks, IET Control Theory Appl, 8, 1247-1255, (2014) · doi:10.1049/iet-cta.2013.1077
[24] Tang, Y; Wang, Z; Fang, J, Pinning control of fractional-order weighted complex networks, Chaos, 19, 193-204, (2009) · Zbl 1311.34018 · doi:10.1063/1.3068350
[25] Wang, X; Chen, G; Ching, W, Pinning control of scale-free dynamical networks, Phys A, 310, 521-531, (2002) · Zbl 0995.90008 · doi:10.1016/S0378-4371(02)00772-0
[26] Xu, X; Hong, Y, Matrix approach to model matching of asynchronous sequential machines, IEEE Trans Autom Control, 58, 2974-2979, (2013) · Zbl 1369.93354 · doi:10.1109/TAC.2013.2259957
[27] Yang, M; Li, R; Chu, T, Controller design for disturbance decoupling of Boolean control networks, Automatica, 49, 273-277, (2013) · Zbl 1257.93067 · doi:10.1016/j.automatica.2012.10.010
[28] Young, HP, The diffusion of innovations in social networks, Gen Inf, 413, 2329-2334, (2000)
[29] Yu, W; Chen, G; Lv, J, On pinning synchronization of complex dynamical networks, Automatica, 45, 429-435, (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[30] Zhang, J; Huang, Z; Dong, J; Huang, L; Lai, Y, Controlling collective dynamics in complex minority-game resource-allocation systems, Phys Rev E, 87, 052808, (2013) · doi:10.1103/PhysRevE.87.052808
[31] Zhang, L; Zhang, K, Controllability and observability of Boolean control networks with time-variant delays in states, IEEE Trans Neural Netw Learn Syst, 24, 1478-1484, (2013) · doi:10.1109/TNNLS.2013.2246187
[32] Zhao, Y; Li, Z; Cheng, D, Optimal control of logical control networks, IEEE Trans Autom Control, 56, 1766-1776, (2011) · Zbl 1368.93396 · doi:10.1109/TAC.2010.2092290
[33] Zhong, J; Lu, J; Liu, Y; Cao, J, Synchronization in an array of output-coupled Boolean networks with time delay, IEEE Trans Neural Netw Learn Syst, 25, 2288-2294, (2014) · doi:10.1109/TNNLS.2014.2305722
[34] Zhu, B; Xia, X; Wu, Z, Evolutionary game theoretic demand-side management and control for a class of networked smart grid, Automatica, 70, 94-100, (2016) · Zbl 1339.93023 · doi:10.1016/j.automatica.2016.03.027
[35] Zou, Y; Zhu, J, Kalman decomposition for Boolean control networks, Automatica, 54, 65-71, (2015) · Zbl 1318.93043 · doi:10.1016/j.automatica.2015.01.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.