×

Multiscale simulation of water flow past a \(C_{540}\) fullerene. (English) Zbl 1397.76116

Summary: We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the \(C_{540}\) buckyball with a lattice-Boltzmann (LB) description for the Navier-Stokes equations. The proposed method links the MD and LB domains using a fully three-dimensional interface and coupling of velocity gradients. The present overlapping domain method implicitly preserves the flux of mass and momentum and bridges flux-based and Schwarz domain decomposition algorithms. We use this method to determine the slip length and hydrodynamic radius for water flow past a buckyball.

MSC:

76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

AdResS
Full Text: DOI

References:

[1] Maeda-Mamiya, R.; Noiri, E.; Isobe, H.; Nakanishi, W.; Okamoto, K.; Doi, K.; Sugaya, T.; Izumi, T.; Homma, T.; Nakamura, E., In vivo gene delivery by cationic tetraamino fullerene, Proc. Natl Acad. Sci. USA, 107, 5339-5344 (2010)
[2] Lane, J. M.D.; Grest, G. S., Spontaneous asymmetry of coated spherical nanoparticles in solution and at liquid-vapor interfaces, Phys. Rev. Lett., 104, 23, 235501 (2010)
[3] Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J., Therapeutic cell engineering with surface-conjugated synthetic nanoparticles, Nat. Med., 16, 9, 1035-1041 (2010)
[4] Thomas, J. A.; McGaughey, A. J.H., Reassessing fast water transport through carbon nanotubes, Nano Lett., 8, 2788-2793 (2008)
[5] Falk, K.; Sedlmeier, F.; Joly, L.; Netz, R. R.; Bocquet, L., Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction, Nano Lett., 10, 4067-4073 (2010)
[6] Weinan, E.; Enquist, B.; Li, X. T.; Ren, W. Q.; Vanden-Eijden, E., Heterogeneous multiscale methods: a review, CiCP, 2, 367-450 (2007) · Zbl 1164.65496
[7] Praprotnik, M.; Site, L. Delle; Kremer, K., Multiscale simulation of soft matter: from scale bridging to adaptive resolution, Annu. Rev. Phys. Chem., 59, 545-571 (2008)
[8] Mohamed, K. M.; Mohamad, A. A., A review of the development of hybrid atomistic-scontinuum methods for dense fluids, Microfluid Nanofluid, 8, 283-302 (2010)
[9] O’Connell, S. T.; Thompson, P. A., Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows, Phys. Rev. E, 52, R5792 (1995)
[10] Flekkoy, E. G.; Wagner, G.; Feder, J., Hybrid model for combined particle and continuum dynamics, Europhys. Lett., 52, 271-276 (2000)
[11] Hadjiconstantinou, N. G., Combining atomistic and continuum simulations of contact-line motion, Phys. Rev. E, 59, 2475-2478 (1999)
[12] Werder, T.; Walther, J. H.; Koumoutsakos, P., Hybrid atomistic-continuum method for the simulation of dense fluid flows, J. Comput. Phys., 205, 373-390 (2005) · Zbl 1087.76542
[13] Fabritiis, G. D.; Delgado-Buscalioni, R.; Coveney, P. V., Multiscale modeling of liquids with molecular specificity, Phys. Rev. Lett., 97, 134501 (2006)
[14] Kotsalis, E. M.; Walther, J. H.; Kaxiras, E.; Koumoutsakos, P., Control algorithm for multiscale flow simulations of water, Phys. Rev. E, 79, 045701 (2009), (R)
[15] Delgado-Buscalioni, R.; Kremer, K.; Praprotnik, M., Concurrent triple-scale simulation of molecular liquids, J. Chem. Phys., 128, 114110 (2008)
[16] Fedosov, D. A.; Karniadakis, G. E., Triple-decker: interfacing atomistic-mesoscopic-continuum flow regimes, J. Comput. Phys., 228, 1157-1171 (2009) · Zbl 1330.76102
[17] Delgado-Buscalioni, R.; Kremer, K.; Praprotnik, M., Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water, J. Chem. Phys., 131, 244107 (2009)
[18] Donev, A.; Bell, J. B.; Garcia, A. L.; Alder, B. J., A hybrid particle-continuum method for hydrodynamics of complex fluids, Multiscale Model. Simul., 8, 871-911 (2010) · Zbl 1248.76119
[19] Kotsalis, E. M.; Walther, J. H.; Koumoutsakos, P., Control of density fluctuations in atomistic-continuum simulations of dense liquids, Phys. Rev. E, 76, 1, 016709 (2007)
[20] Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P., Coupling lattice boltzmann and molecular dynamics models for dense liquids, Phys. Rev. E, 75, 046704 (2007)
[21] Berendsen, H. J.C.; Grigera, J. R.; Straatsma, T. P., The missing term in effective pair potentials, J. Phys. Chem., 91, 6269-6271 (1987)
[22] Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P., On the water-graphite interaction for use in MD simulations of graphite and carbon nanotubes, J. Phys. Chem. B, 107, 1345-1352 (2003)
[23] Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P., On the water-graphite interaction for use in MD simulations of graphite and carbon nanotubes (vol. 107b, p. 1349, 2003), J. Phys. Chem. B, 112, 44 (2008), pp. 14090-14090
[24] Neumann, M., The dielectric constant of water. Computer simulations with the MCY potential, Mol. Phys., 50 (1983), pp. 841-841
[25] Junghans, C.; Praprotnik, M.; Kremer, K., Transport properties controlled by a thermostat: an extended dissipative particle dynamics thermostat, Soft Matter, 4, 156-161 (2008)
[26] Batchelor, G. K., An Introduction To Fluid Dynamics (1967), Cambridge University Press · Zbl 0152.44402
[27] Song, Y.; Dai, L. L., The shear viscosities of common water models by non-equilibrium molecular dynamics simulations, Mol. Simul., 36, 560-567 (2010)
[28] Castillo, R.; Garza, C.; Ramos, S., Brownian motion at the molecular level in liquid solutions of \(c_{60}\), J. Phys. Chem., 98, 4188-4190 (1994)
[29] Padmavathi, B. S.; Amaranath, T.; Nigam, S. D., Stokes flow past a sphere with mixed slip-stick boundary conditions, Fluid Dyn. Res., 11, 229-234 (1993) · Zbl 0783.76030
[30] Zwanzig, R.; Bixon, M., Hydrodinamic theory of the velocity correlation function, Phys. Rev. A, 2, 2005-2012 (1970)
[31] Walther, J. H.; Werder, T.; Jaffe, R. L.; Koumoutsakos, P., Hydrodynamic properties of carbon nanotubes, Phys. Rev. E, 69, 062201 (2004)
[32] Schmidt, J. R.; Skinner, J. L., Hydrodynamics boundary conditions, the Stokes-Einstein law and long-time tails in the Brownian limit, J. Chem. Phys., 119, 8062-8068 (2003)
[33] Dünweg, B.; Kremer, K., Molecular dynamics simulation of a polymer chain in solution, J. Chem. Phys., 99, 6983-6997 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.