×

On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags. (English) Zbl 1397.74055

Summary: The aim of the present work is to derive the representation of a Galerkin-type solution in the linear theory of generalized thermoelasticity with three phase-lags, recently developed by S. K. Roy Choudhuri [J. Therm. Stresses 30, 231–238 (2007)]. Firstly, the representation of a Galerkin-type solution of equations of motion is obtained in the form of a theorem. Then, the representation theorem of a Galerkin-type system of equations of steady oscillations is established. Finally, the general solution of the system of homogeneous equations of steady oscillation is also presented based on our theorem.

MSC:

74F05 Thermal effects in solid mechanics
74B05 Classical linear elasticity
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Biot M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956) · Zbl 0071.41204 · doi:10.1063/1.1722351
[2] Lord H.W., Shulman Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967) · Zbl 0156.22702 · doi:10.1016/0022-5096(67)90024-5
[3] Green A.E., Lindsay K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972) · Zbl 0775.73063 · doi:10.1007/BF00045689
[4] Green A.E., Naghdi P.M.: A re-examination of the basic postulates of thermo-mechanics. Proc. Roy. Soc. London A 432, 171–194 (1991) · Zbl 0726.73004 · doi:10.1098/rspa.1991.0012
[5] Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992) · doi:10.1080/01495739208946136
[6] Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–209 (1993) · Zbl 0784.73009 · doi:10.1007/BF00044969
[7] Tzou D.Y.: A unified field approach for heat conduction from macro to micro scales. ASME J. Heat Transf. 117, 8–16 (1995) · doi:10.1115/1.2822329
[8] Quintanilla R., Racke R.: A note on stability in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 49, 1209–1213 (2006) · Zbl 1189.80025 · doi:10.1016/j.ijheatmasstransfer.2005.10.016
[9] Chandrasekharaiah D.S.: Hyperbolic thermoelasticity: Review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998) · doi:10.1115/1.3098984
[10] Roychoudhuri S.K.: On a thermoelastic three phase-lag model. J. Therm. Stress. 30, 231–238 (2007) · doi:10.1080/01495730601130919
[11] Quintanilla R., Racke R.: A note on stability in three phase-lag heat conduction. Int. J. Heat Mass Transf. 51, 24–29 (2008) · Zbl 1140.80363 · doi:10.1016/j.ijheatmasstransfer.2007.04.045
[12] Quintanilla R.: Spatial behavior of solutions of the three phase-lag heat equation. Appl. Math. Comput. 213, 153–162 (2009) · Zbl 1167.35409 · doi:10.1016/j.amc.2009.03.005
[13] Kar A., Kanoria M.: Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three phase-lag effect. Euro. J. Mech. A/Solids 28, 757–767 (2009) · Zbl 1167.74391 · doi:10.1016/j.euromechsol.2009.01.003
[14] Kar A., Kanoria M.: Generalized thermo-visco-elastic problem of a sherical shell with three phase-lag effect. Appl. Math. Modell. 33, 3287–3298 (2009) · Zbl 1205.74021 · doi:10.1016/j.apm.2008.10.036
[15] Mukhopadhyay, S., Kumar, R.: Analysis of phase-lag effects on wave propagation in a thick plate under axisymmetric temperature distribution. Acta Mech. (2009) (online available: doi: 10.1007/s00707-009-0209-9 ) · Zbl 1397.74101
[16] Gurtin, M.E.: The linear theory of elasticity, in C. A. Trusdell (ed.). Handbuch der Physik VI a/2, 1–295 (1972)
[17] Nowacki W.: Dynamic problems in thermoelasticity. Noordhoff Int. Publ., Leyden (1975) · Zbl 0364.73001
[18] Nowacki, W.: Theory of elasticity. Mir, Moscow (1975) (Russian) · Zbl 0314.73072
[19] Kupradze V.D., Gegelia T.G., Basheleishvili M.O., Burchuladze T.V.: Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland Publ. Company, Amsterdam (1979)
[20] Scalia A., Svanadze M.: On the representations of solutions of the theory of thermoelasticity with microtemperatures. J. Therm. Stress. 29, 849–863 (2006) · doi:10.1080/01495730600705448
[21] Galerkin B.: Contribution à la solution générale du probléme de la théorie de l’ élasticite, dans le cas de trois dimensions. C. R. Acad. Sci. Paris. 190, 1047–1048 (1930) · JFM 56.0700.07
[22] Iacovache M.: O extindere a metogei lui galerkin pentru sistemul ecuatiilor elsticittii. Bul. St. Acad. Rep. Pop. Române A1, 593–596 (1949)
[23] Nowacki W.: Green functions for the thermoelastic medium. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 12, 465–472 (1964) · Zbl 0138.21003
[24] Nowacki W.: On the completeness of potentials in micropolar elasticity. Arch. Mech. Stos. 21, 107–122 (1969) · Zbl 0194.28601
[25] Sandru N.: On some problems of the linear theory of asymmetric elasticity. Int. J. Eng. Sci. 4, 81–96 (1966) · doi:10.1016/0020-7225(66)90031-0
[26] Chandrasekharaiah D.S.: Complete solutions in the theory of elastic materials with voids-I. Quart. J. Mech. Appl. Math. 40, 401–414 (1987) · Zbl 0618.73016 · doi:10.1093/qjmam/40.3.401
[27] Chandrasekharaiah D.S.: Complete solutions in the theory of elastic materials with voids-II. Quart. J. Mech. Appl. Math. 42, 41–54 (1989) · Zbl 0679.73016 · doi:10.1093/qjmam/42.1.41
[28] Ciarletta M.: A solution of Galerkin type in the theory of thermoelastic materials with voids. J. Therm. Stress. 14, 409–417 (1991) · doi:10.1080/01495739108927076
[29] Svanadze M.: Representation of the general solution of the equation of steady oscillations of two-component elastic mixtures. Int. Appl. Mech. 29, 22–29 (1993) · doi:10.1007/BF00862494
[30] Svanadze M., de Boer R.: On the representations of solutions in the theory of fluid-saturated porous media. Quart. J. Mech. Appl. Math. 58, 551–562 (2005) · Zbl 1082.74016 · doi:10.1093/qjmam/hbi018
[31] Ciarletta M.: A theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stress. 22, 581–594 (1999) · doi:10.1080/014957399280760
[32] Ciarletta M.: General theorems and fundamental solutions in the dynamical theory of mixtures. J. Elast. 39, 229–246 (1995) · Zbl 0831.73009 · doi:10.1007/BF00041839
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.