×

Traveling wave solutions of a highly nonlinear shallow water equation. (English) Zbl 1397.35209

Summary: Motivated by the question whether higher-order nonlinear model equations, which go beyond the Camassa-Holm regime of moderate amplitude waves, could point us to new types of waves profiles, we study the traveling wave solutions of a quasilinear evolution equation which models the propagation of shallow water waves of large amplitude. The aim of this paper is a complete classification of its traveling wave solutions. Apart from symmetric smooth, peaked and cusped solitary and periodic traveling waves, whose existence is well-known for moderate amplitude equations like Camassa-Holm, we obtain entirely new types of singular traveling waves: periodic waves which exhibit singularities on both crests and troughs simultaneously, waves with asymmetric peaks, as well as multi-crested smooth and multi-peaked waves with decay. Our approach uses qualitative tools for dynamical systems and methods for integrable planar systems.

MSC:

35Q35 PDEs in connection with fluid mechanics
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
35C07 Traveling wave solutions
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI

References:

[1] T. B. Benjamin; J. E. Feir, The disintegration of wavetrains in deep water, J. Fluid Mech., 27, 417-430 (1967) · Zbl 0144.47101
[2] J. L. Bona; P. E. Souganidis; W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 411, 395-412 (1987) · Zbl 0648.76005 · doi:10.1098/rspa.1987.0073
[3] G. Brüll; M. Ehrnström; A. Geyer; L. Pei, Symmetric solutions of evolutionary partial differential equations, Nonlinearity, 30, 3932-3950 (2017) · Zbl 1375.35017
[4] R. Camassa; D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521 · doi:10.1103/PhysRevLett.71.1661
[5] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166, 523-535 (2006) · Zbl 1108.76013 · doi:10.1007/s00222-006-0002-5
[6] A. Constantin, An exact solution for equatorially trapped waves, J. Geophys. Res. : Oceans, 117 (2012), C05029.
[7] A. Constantin, Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves, J. Phys. Oceanogr., 44, 781-789 (2014) · doi:10.1175/JPO-D-13-0174.1
[8] A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, 81 SIAM Philadelphia, 2011. · Zbl 1266.76002
[9] A. Constantin; J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. Math., 173, 559-568 (2011) · Zbl 1228.35076 · doi:10.4007/annals.2011.173.1.12
[10] A. Constantin; D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192, 165-186 (2009) · Zbl 1169.76010 · doi:10.1007/s00205-008-0128-2
[11] A. Constantin; W. Strauss, Stability of peakons, Commun. Pure Appl. Math., 53, 603-610 (2000) · Zbl 1049.35149 · doi:10.1002/(SICI)1097-0312(200005)53:53.0.CO;2-L
[12] A. Constantin; W. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12, 415-422 (2002) · Zbl 1022.35053 · doi:10.1007/s00332-002-0517-x
[13] A. Constantin; W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., 60, 911-950 (2007) · Zbl 1125.35081 · doi:10.1002/cpa.20165
[14] B. Deconinck; T. Kapitula, The orbital stability of the cnoidal waves of the Korteweg-de Vries equation, Phys. Lett. Sect. A Gen. At. Solid State Phys., 374, 4018-4022 (2010) · Zbl 1238.35128 · doi:10.1016/j.physleta.2010.08.007
[15] A. Degasperis and M. Procesi, Asymptotic integrability, In A. Degasperis and G. Gaeta, editors, Symmetry and Perturbation Theory, pages 23-37, World Scientific, Singapore, 1999. · Zbl 0963.35167
[16] F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer, Berlin, 2006. · Zbl 1110.34002
[17] N. Duruk Mutlubas; A. Geyer, Orbital stability of solitary waves of moderate amplitude in shallow water, J. Differ. Equations, 255, 254-263 (2013) · Zbl 1284.35335 · doi:10.1016/j.jde.2013.04.010
[18] M. Ehrnström; H. Holden; X. Raynaud, Symmetric waves are traveling waves, Int. Math. Res. Not., 2009, 4578-4596 (2009) · Zbl 1181.35230
[19] A. Gasull; A. Geyer, Traveling surface waves of moderate amplitude in shallow water, Nonlinear Anal. Theory, Methods Appl., 102, 105-119 (2014) · Zbl 1385.37081 · doi:10.1016/j.na.2014.02.005
[20] A. Geyer, Symmetric waves are traveling waves for a shallow water equation modeling surface waves of moderate amplitude, J. Nonlinear Math. Phys., 22, 545-551 (2015) · Zbl 1420.35237 · doi:10.1080/14029251.2015.1129492
[21] A. Geyer; V. Mañosa, Singular solutions for a class of traveling wave equations, Nonlinear Anal. Real World Appl., 31, 57-76 (2016) · Zbl 1345.34015 · doi:10.1016/j.nonrwa.2016.01.009
[22] J. Guggenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 1983. · Zbl 0515.34001
[23] D. Henry, Equatorially trapped nonlinear water waves in a \(β\)-plane approximation with centripetal forces, J. Fluid Mech. , 804 (2016), R1, 11 pp. · Zbl 1454.76024
[24] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York-Heidelberg, 1975. · Zbl 0307.28001
[25] V. M. Hur, Analyticity of rotational flows beneath solitary water waves, Int. Math. Res. Not. IMRN, 2012, 2550-2570 (2012) · Zbl 1305.35012
[26] R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455, 63-82 (2002) · Zbl 1037.76006
[27] D. J. Korteweg; G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag., 39, 422-443 (1895) · JFM 26.0881.02 · doi:10.1080/14786449508620739
[28] J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11, 151-163 (2004) · Zbl 1067.35076 · doi:10.2991/jnmp.2004.11.2.2
[29] J. Lenells, Stability of periodic peakons, Int. Math. Res. Not., 10, 485-499 (2004) · Zbl 1075.35052
[30] J. Lenells, Stability for the periodic Camassa-Holm equation, Math. Scand., 97, 188-200 (2005) · Zbl 1085.35032 · doi:10.7146/math.scand.a-14971
[31] J. Lenells, Traveling wave solutions of the Camassa-Holm equation, J. Differ. Equ., 217, 393-430 (2005) · Zbl 1082.35127 · doi:10.1016/j.jde.2004.09.007
[32] J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306, 72-82 (2005) · Zbl 1068.35163 · doi:10.1016/j.jmaa.2004.11.038
[33] Z. Lin; Y. Liu, Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math., 62, 125-146 (2009) · Zbl 1165.35045
[34] T. Lyons, The pressure in a deep-water Stokes wave of greatest height, J. Math. Fluid Mech., 18, 209-218 (2016) · Zbl 1347.35196 · doi:10.1007/s00021-016-0249-6
[35] R. Quirchmayr, A new highly nonlinear shallow water wave equation, J. Evol. Equations, 16, 539-567 (2016) · Zbl 1360.35189 · doi:10.1007/s00028-015-0312-4
[36] H. Segur; D. Henderson; J. Carter; J. Hammack; C.-M. Li; D. Pheiff; K. Socha, Stabilizing the Benjamin-Feir instability, J. Fluid Mech., 539, 229-271 (2005) · Zbl 1120.76022 · doi:10.1017/S002211200500563X
[37] G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics 140 AMS, Providence, RI, 2012. · Zbl 1263.34002
[38] J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7, 1-48 (1996) · Zbl 0897.35067 · doi:10.12775/TMNA.1996.001
[39] E. Varvaruca; G. S. Weiss, The Stokes conjecture for waves with vorticity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29, 861-885 (2012) · Zbl 1317.35209 · doi:10.1016/j.anihpc.2012.05.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.