×

On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. (English) Zbl 1397.35179

Summary: This paper deals with the local well-posedness of free boundary problems for the Navier-Stokes equations in the case where the fluid initially occupies an exterior domain \(\Omega\) in \(N\)-dimensional Euclidian space \(\mathbb{R}^N\).

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35R35 Free boundary problems for PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
Full Text: DOI

References:

[1] H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in \(\begin{document} L^q\end{document} \)-Sobolev spaces, Adv. Differential Eqns., 10, 45-64 (2005) · Zbl 1105.35072
[2] H. Amann, Linear and Quasilinear Parabolic Problems, Vol. Ⅰ. Birkhäuser, Basel, 1995. · Zbl 0819.35001
[3] J. T. Beale, The initial value problem for the Navier-Stokes equations with a free boundary, Comm. Pure Appl. Math., 31, 359-392 (1980) · Zbl 0464.76028
[4] J. T. Beale, Large time regularity of viscous surface waves, Arch. Rat. Mech. Anal., 84, 307-352 (1984) · Zbl 0545.76029
[5] J. T. Beale; T. Nishida, Large time behavior of viscous surface waves, Lecture Notes in Numer. Appl. Anal., 8, 1-14 (1985) · Zbl 0642.76048
[6] D. Bothe; J. Prüss, \( \begin{document} L_p \end{document}\) theory for a class of non-Newtonian fluids, SIAM J. Math. Anal., 39, 379-421 (2007) · Zbl 1172.35052
[7] A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. in Pure Math., 4, 33-49 (1961) · Zbl 0195.41103
[8] Y. Enomoto; Y. Shibata, On the \(\begin{document} \mathcal{R}\end{document} \)-sectoriality and its application to some mathematical study of the viscous compressible fluids, Funkcial. Ekvac., 56, 441-505 (2013) · Zbl 1296.35118
[9] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady State Problem, Second Edition, Springer Monographs, Springer, 2011. · Zbl 1245.35002
[10] Y. Hataya; S. Kawashima, Decaying solution of the Navier-Stokes flow of infinite volume without surface tension, Nonlinear Anal., 71, 2535-2539 (2009) · Zbl 1239.35111
[11] Y. Hataya, A remark on Beal-Nishida’s paper, Bull. Inst. Math. Acad. Sin. (N.S.), 6, 293-303 (2011) · Zbl 1282.76097
[12] I. Sh. Mogilevskii, Estimates of solutions of a general intial-boundary value problem for the linear nonstationary system of Navier-Stokes equations in a half-space, Zap Nauchn. Sem. LOMI., 84, 147-173 (1979) · Zbl 0414.35063
[13] I. Sh. Mogilevskii, Solvability of a general boundary value problem for a linearized nonstationary system of Navier-Stokes equations, Zap Nauchn. Sem. LOMI., 110, 105-119 (1981) · Zbl 0484.76046
[14] P. B. Mucha; W. Zajączkowski, On the existence for the Cauchy-Neumann problem for the Stokes system in the L_p-framework, Studia Math., 143, 75-101 (2000) · Zbl 0970.35107
[15] T. Nishida, Equations of fluid dynamics -free surface problems, Comm. Pure Appl. Math., 39, 221-238 (1986) · Zbl 0595.76068
[16] J. Prüss and G. Simonett, Moving Interfaces ad Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, vol. 105, Birkhäuser, 2016. · Zbl 1435.35004
[17] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, New York, 1996. · Zbl 0873.35001
[18] H. Saito and Y. Shibata, On the global wellposedness of free boundary problem for the Navier Stokes systems with surface tension, Preprint.
[19] M. Schonbek; Y. Shibata, On a global well-posedness of strong dynamics of incompressible nematic liquid crystals in \(\begin{document} {\mathbb{R}^N} \end{document} \), J. Evol. Equ., 537-550 (2017) · Zbl 1367.35128 · doi:10.1007/s00028-016-0358-y
[20] Y. Shibata, On the \(\begin{document} \mathcal{R}\end{document} \)-boundedness of solution operators for the Stokes equations with free boundary condition, Diff. Int. Eqns., 27, 313-368 (2014) · Zbl 1324.35151
[21] Y. Shibata, On some free boundary problem of the Navier-Stokes equations in the maximal L_p-L_q regularity class, J. Differential Equations., 258, 4127-4155 (2015) · Zbl 1319.35166
[22] Y. Shibata, On the \(\begin{document} \mathcal{R}\end{document} \)-bounded solution operators in the study of free boundary problem for the Navier-Stokes equations, in Mathematical Fluid Dynamics, Present and Futureh Tokyo, Japan, November 2014 (ed. Y. Shibata and Y. Suzuki), Springer Proceedings in Mathematics & Statistics, Vol. 183, (2016), 203-285. · Zbl 1373.35224
[23] Y. Shibata, Global well-posedness of unsteady motion of viscous incompressible capillary liquid bounded by a free surface, Evolution Equations and Control Theory, 7, 117-152 (2018) · Zbl 1405.35259
[24] Y. Shibata, Global wellposedness for the free boundary problem of the Navier-Stokes equations in an exterior domain, Fluid Mech. Res. Int. , 1 (2017), 00008. DOI: 10.15406/fimrij.2017.01.00008.
[25] Y. Shibata, On L_p-L_q decay estimate for Stokes equations with free boundary condition in an exterior domain, Accepted for publication in Asymptotic Analysis. · Zbl 1394.35373
[26] Y. Shibata; S. Shimizu, On a resolvent estimate for the Stokes system with Neumann boundary condition, Diff. Int. Eqns., 16, 385-426 (2003) · Zbl 1054.35056
[27] Y. Shibata; S. Shimizu, Decay properties of the Stokes semigroup in exterior domains with Neumann boundary condition, J. Math. Soc. Japan, 59, 1-34 (2007) · Zbl 1124.35058
[28] Y. Shibata; S. Shimizu, On the L_p-L_q maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math., 615, 157-209 (2008) · Zbl 1145.35053
[29] C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domain, Pitmann Research Notes in Mathematics Series 360, Addison Wesley Longman Limited, 1996. · Zbl 0868.35001
[30] V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Math. USSR Izvestiya, 31, 381-405 (1988) · Zbl 0850.76180
[31] V. Solonnikov, Unsteady motion of a finite mass of fluid, bounded by a free surface, J. Soviet Math., 40, 672-685 (1988) · Zbl 0639.76035
[32] O. Steiger, On Navier-Stokes equations with first order boundary conditions, J. Math. Fluid Mech., 8, 456-481 (2006) · Zbl 1128.35086
[33] H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Pure and Applied Mathematics, A Series of Monographs and Textbooks, Marcel Dekker, Inc. New York·Basel, 1997. · Zbl 0867.35003
[34] N. Tanaka, Global existence of two phase non-homogeneous viscous incompressible weak fluid flow, Commun. Partial Differential Equations, 18, 41-81 (1993) · Zbl 0773.76073
[35] A. Tani, Small-time existence for the three-dimensional incompressible Navier-Stokes equations with a free surface, Arch. Rat. Mech. Anal., 133, 299-331 (1996) · Zbl 0857.76026
[36] A. Tani; N. Tanaka, Large time existence of surface waves in incompressible viscous fluids with or without surface tension, Arch. Rat. Mech. Anal., 130, 303-314 (1995) · Zbl 0844.76025
[37] L. Weis, Operator-valued Fourier multiplier theorems and maximal L_p-regularity, Math. Ann., 319, 735-758 (2001) · Zbl 0989.47025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.