×

Blowup in solutions of a quasilinear wave equation with variable-exponent nonlinearities. (English) Zbl 1397.35042

The authors study the following nonlinear equation with variable exponents: \[ u_{tt}-\operatorname{div} (|\nabla u|^{r(\cdot)-2}\nabla u)+a|u_t|^{m(\cdot)-2}u_t=b|u|^{p(\cdot)-2}u \] coupled with initial conditions and homogeneous Dirichlet data. In the model, \(a, b>0\) and the exponents \(m\), \(p\), and \(r\) are given functions. The main result establishes blow-up of the solution in finite time for negative initial energy. Furthermore, blow-up is proven for certain solutions with positive energy as well.

MSC:

35B44 Blow-up in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35L72 Second-order quasilinear hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
Full Text: DOI

References:

[1] BallJ. Remarks on blow‐up and nonexistence theorems for nonlinear evolution equations. Q J Math. 1977;28(4):473‐486. · Zbl 0377.35037
[2] LevineHA. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations. SIAM J Math Anal. 1974;5(1):138‐146. · Zbl 0243.35069
[3] KopackovaM. Remarks on bounded solutions of a semilinear dissipative hyperbolic equation. Comment Math Univ Carolin. 1989;30(4):713‐719. · Zbl 0707.35026
[4] VitillaroE. Global nonexistence theorems for a class of evolution equations with dissipation. Arch Ration Mech Anal. 1999;149(2):155‐182. · Zbl 0934.35101
[5] GeorgievV, TodorovaG. Existence of solutions of the wave equation with nonlinear damping and source terms. J Diff Eqns. 1994;109(2):295‐308. · Zbl 0803.35092
[6] MessaoudiSA. Blow up in a nonlinearly damped wave equation. Math Nachr. 2001;231(1):1‐7.
[7] ChenC, YaoH, ShaoL. Global existence, uniqueness, and asymptotic behavior of solution for p−Laplacian type wave equation. J Inequal Appl. 2010;2010(1):216760, pp. 1‐15. · Zbl 1211.35199
[8] BenaissaA, MokeddemS. Decay estimates for the wave equation of p−Laplacian type with dissipation of m−Laplacian type. Math Methods Appl Sci. 2007;30(2):237‐247. · Zbl 1108.35315
[9] YangZ. Existence and asymptotic behaviour of solutions for a class of quasi‐linear evolution equations with non‐linear damping and source terms. Math Methods Appl Sci. 2002;25(10):795‐814. · Zbl 1011.35121
[10] MessaoudiSA. On the decay of solutions for a class of quasilinear hyperbolic equations with non‐linear damping and source terms. Math Method Appl Sci. 2005;28(15):1819‐1828. · Zbl 1185.35143
[11] MokeddemS, MansourKBW. The rate at which the energy of solutions for a class of‐Laplacian wave equation decays. Int J Difference Equ. 2015;2015:1‐5. · Zbl 1329.35213
[12] IbrahimS, LyaghfouriA. Blow‐up solutions of quasilinear hyperbolic equations with critical Sobolev exponent. Math Model Nat Phenom. 2012;7(2):66‐76. · Zbl 1248.35129
[13] GalaktionovVA, PohozaevSI. Blow‐up and critical exponents for nonlinear hyperbolic equations. Nonlinear Anal Theory Methods Appl. 2003;53(3):453‐466. · Zbl 1012.35058
[14] WuY, XueX. Decay rate estimates for a class of quasilinear hyperbolic equations with damping terms involving p‐Laplacian. J Math Phys. 2014;55(12):121504, pp.1‐12. · Zbl 1304.35679
[15] MessaoudiSA, HouariBS. Global non‐existence of solutions of a class of wave equations with non‐linear damping and source terms. Math Method Appl Sci. 2004;27(14):1687‐1696. · Zbl 1073.35178
[16] YeY. Global nonexistence of solutions for systems of quasilinear hyperbolic equations with damping and source terms. Bound Value Probl. 2014;2014(1):251, pp.1‐10. · Zbl 1332.35211
[17] KafiniM, MessaoudiSA. A blow‐up result in a nonlinear wave equation with delay. Mediterr J Math. 2016;13(1):237‐247. · Zbl 1343.35044
[18] BenaissaA, MimouniS. Energy decay of solutions of a wave equation of p−Laplacian type with a weakly nonlinear dissipation. JIPAM. 2006;7: pp. 1. · Zbl 1133.35321
[19] GaoH, MaTF. Global solutions for a nonlinear wave equation with the p−Laplacian operator. Electron J Qual Theory Differ Equ. 1999;11:1‐13. · Zbl 0954.35031
[20] HamidiAE, VétoisJ. Sharp Sobolev asymptotics for critical anisotropic equations. Arch Ration Mech An. 2009;192(1):1‐36. · Zbl 1185.35081
[21] RammahaMA, ToundykovD. Weak solutions and blow‐up for wave equations of p‐Laplacian type with supercritical sources. J Math Phys. 2015;56(8):081503, pp.1‐30. · Zbl 1329.35214
[22] AntontsevS, ShmarevS. Blow‐up of solutions to parabolic equations with nonstandard growth conditions. J Comput Appl Math. 2010;234(9):2633‐2645. · Zbl 1196.35057
[23] AntontsevS, ZhikovV. Higher integrability for parabolic equations of p(x,t)‐ Laplacian type. Advances in Differential Equations. 2005;10(9):1053‐1080. · Zbl 1122.35043
[24] AntontsevS. Wave equation with p(x,t)−Laplacian and damping term: blow‐up of solutions. CR Mecanique. 2011;339(12):751‐755.
[25] AntontsevS. Wave equation with p(x,t)−Laplacian and damping term: existence and blow‐up. Differ Equ Appl. 2011;3(4):503‐525. · Zbl 1250.35144
[26] GuoB, GaoW. Blow‐up of solutions to quasilinear hyperbolic equations with p(x,t)−Laplacian and positive initial energy. CR Mecanique. 2014;342(9):513‐519.
[27] SunL, RenY, GaoW. Lower and upper bounds for the blow‐up time for nonlinear wave equation with variable sources. Comput Math Appl. 2016;71(1):267‐277. · Zbl 1443.35102
[28] FerreiraJ, MessaoudiSA. On the general decay of a nonlinear viscoelastic plate equation with a strong damping and \(\overrightarrow{p}(x, t) -\) Laplacian. Nonlinear Anal Theory Methods Appl. 2014;104:40‐49. · Zbl 1396.35062
[29] MessaoudiSA, TalahmehAA. A blow‐up result for a nonlinear wave equation with variable‐exponent nonlinearities. Appl Anal. 2017;96(9):1509‐1515. https://doi.org/10.1080/00036811.2016.1276170. · Zbl 1382.35055 · doi:10.1080/00036811.2016.1276170
[30] KorpusovMO. Non‐existence of global solutions to generalized dissipative Klein‐Gordon equations with positive energy. Electron J Differ Equ. 2012;2012(119):1‐10. · Zbl 1254.35030
[31] GaoY, GaoW. Existence of weak solutions for viscoelastic hyperbolic equations with variable exponents. Bound Value Probl. 2013;2013(1):1‐8. · Zbl 1295.35181
[32] AutuoriG, PucciP, SalvatoriM. Global nonexistence for nonlinear Kirchhoff systems. Arch Rational Mech Anal. 2010;196(2):489‐516. · Zbl 1201.35138
[33] AntontsevS, FerreiraJ. Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions. Nonlinear Anal Theory Methods Appl. 2013;93:62‐77. · Zbl 1284.35285
[34] AntontsevS, ShmarevS. Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow‐up, Atlantis Studies in Differential Equations, vol. 4. Atlantis Press, Paris, France; 2015. · Zbl 1410.35001
[35] FanX, ZhaoD. On the spaces L^p(x)(Ω) and W^m,p(x)(Ω). J Math Anal Appl. 2001;263(2):424‐446. · Zbl 1028.46041
[36] LarsD, HarjulehtoP, HastoP, RuzickaM. Lebesgue and Sobolev spaces with variable exponents. Lect Notes Math. 2011;2017. · Zbl 1222.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.