×

On a system of fuzzy fractional differential inclusions with projection operators. (English) Zbl 1397.34014

Summary: The aim of this paper is to introduce and study a class of fuzzy fractional differential inclusions with projection operators, which captures the desired features of both fuzzy differential inclusions and fractional-order projective dynamical systems within the same framework. The existence of solutions for the open situation is proved by using continuous selection theorem. Moreover, the existence of solutions for the closed situation is shown by employing the Lipschitzean selection theorem and fixed point theorem, respectively. Furthermore, an application and a numerical example are also given.

MSC:

34A07 Fuzzy ordinary differential equations
34A08 Fractional ordinary differential equations
34A60 Ordinary differential inclusions
Full Text: DOI

References:

[1] Arshad, S., On existence and uniqueness of solution of fuzzy fractional differential equations, Iran. J. Fuzzy Syst., 10, 137-151, (2013) · Zbl 1344.34007
[2] Allahviranloo, T.; Armand, A.; Gouyandeh, Z., Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Syst., 26, 1481-1490, (2014) · Zbl 1305.34004
[3] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109, 973-1033, (2010) · Zbl 1198.26004
[4] Agarwal, R. P.; Benchohra, M.; Nieto, J. J.; Ouahab, A., Some results for integral inclusions of Volterra type in Banach spaces, Adv. Differ. Equ., 2010, (2010), 37 pages · Zbl 1207.45013
[5] Agarwal, R. P.; Lakshmikantham, V.; Nieto, J. J., On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72, 2859-2862, (2010) · Zbl 1188.34005
[6] Ahmadian, A.; Salahshour, S.; Baleanu, D.; Amirkhani, H.; Yunus, R., Tau method for the numerical solution of a fuzzy fractional kinetic model and its application to the oil palm frond as a promising source of xylose, J. Comput. Phys., 294, 562-584, (2015) · Zbl 1349.65207
[7] Aubin, J. P.; Cellina, A., Differential inclusions, (1984), Springer-Verlag Berlin · Zbl 0538.34007
[8] Baidosov, V. A., Fuzzy differential inclusions, J. Appl. Math. Mech., 54, 8-13, (1990) · Zbl 0739.93050
[9] Bohnenblust, H. F.; Karlin, S., On a theorem of ville, (Contribution to the Theory of Games, (1950), Princeton University Press Princeton) · Zbl 0041.25701
[10] Chehlabi, M.; Allahviranloo, T., Concreted solutions to fuzzy linear fractional differential equations, Appl. Soft Comput., 44, 108-116, (2016)
[11] Cañada, A.; Drábek, P.; Fonda, A., Handbook of differential equations: ordinary differential equations, vol. 3, (2006), Elsevier Amsterdam · Zbl 1107.34002
[12] Chen, M. H.; Fu, Y. Q.; Xue, X. P.; Wu, C. X., Two-point boundary value problems of undamped uncertain dynamical systems, Fuzzy Sets Syst., 159, 2077-2089, (2008) · Zbl 1225.34006
[13] Chang, Y. K.; Nieto, J. J., Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model., 49, 605-609, (2009) · Zbl 1165.34313
[14] Deimling, K., Multivalued differential equations, (1992), Walter de Gruyter Berlin · Zbl 0760.34002
[15] Diamond, P.; Kloeden, P., Metric spaces of fuzzy sets: theory and applications, (1994), World Scientific Singapore · Zbl 0873.54019
[16] Diamond, P., Stability and periodicity in fuzzy differential equations, IEEE Trans. Fuzzy Syst., 8, 583-590, (2000)
[17] Diamond, P., Brief note on the variation of constants formula for fuzzy differential equations, Fuzzy Sets Syst., 129, 67-71, (2002) · Zbl 1021.34048
[18] Diethelm, K., The analysis of fractional differential equations, (2010), Springer Berlin · Zbl 1215.34001
[19] Djebali, S.; Górniewicz, L.; Ouahab, A., First-order periodic impulsive semilinear differential inclusions: existence and structure of solution sets, Math. Comput. Model., 52, 683-714, (2010) · Zbl 1202.34110
[20] Ding, K.; Huang, N. J., A new class of interval projection neural networks for solving interval quadratic program, Chaos Solitons Fractals, 35, 718-725, (2008) · Zbl 1137.90020
[21] Dupuis, P.; Nagurney, A., Dynamical systems and variational inequalities, Ann. Oper. Res., 44, 9-42, (1993) · Zbl 0785.93044
[22] Friesz, T. L.; Bernstein, D.; Mehta, N. J.; Tobin, R. L.; Ganjalizadeh, S., Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42, 1120-1136, (1994) · Zbl 0823.90037
[23] Górniewicz, L., Topological fixed point theory of multivalued mappings, (2006), Springer · Zbl 1107.55001
[24] Hüllermeier, E., An approach to modelling and simulation of uncertain dynamical systems, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 5, 117-137, (1997) · Zbl 1232.68131
[25] Hu, S. C.; Papageorgiou, N. S., Handbook of multivalued analysis. vol. I. theory, (1997), Kluwer Academic Publishers Dordrecht · Zbl 0887.47001
[26] Kaleva, O., Fuzzy differential equations, Fuzzy Sets Syst., 24, 301-317, (1987) · Zbl 0646.34019
[27] Khan, N. A.; Razzaq, O. A.; Riaz, F., Numerical simulations for solving fuzzy fractional differential equations by MAX-MIN improved Euler methods, J. Appl. Comput. Sci. Meth., 7, 53-83, (2015)
[28] Kilbas, A. A.; Marzan, S. A., Cauchy problem for differential equation with Caputo derivative, Fract. Calc. Appl. Anal., 7, 297-321, (2004) · Zbl 1114.34005
[29] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and applications of fractional differential equations, (2006), Elsevier · Zbl 1092.45003
[30] Kinderlehrer, D.; Stampacchia, G., An introduction to variational inequalities and their applications, (1980), Academic Press New York · Zbl 0457.35001
[31] Liu, B. D., Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2, 3-16, (2008)
[32] Li, Y.; Li, J., Stability analysis of fractional order systems based on T-S fuzzy model with the fractional order α: \(0 < \alpha < 1\), Nonlinear Dyn., 78, 2909-2919, (2014) · Zbl 1331.93131
[33] Lakshmikantham, V.; Mohapatra, R. N., Theory of fuzzy differential equations and inclusions, (2003), Taylor & Francis London · Zbl 1072.34001
[34] Lasota, A.; Opial, Z., An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 13, 781-786, (1965) · Zbl 0151.10703
[35] Long, H. V.; Son, N. T.K.; Tam, H. T.T., The solvability of fuzzy fractional partial differential equations under Caputo gh-differentiability, Fuzzy Sets Syst., 309, 35-63, (2017) · Zbl 1386.35466
[36] Liu, Z. B.; Tian, K. Z.; Wen, G. Q.; Min, C., Uniqueness and continuous dependence of the solutions of fuzzy delay differential inclusions, J. Intell. Fuzzy Syst., 33, 2171-2176, (2017) · Zbl 1384.34084
[37] Majumdar, K. K.; Majumder, D. D., Fuzzy differential inclusions in atmospheric and medical cybernetics, IEEE Trans. Syst. Man Cybern., Part B, Cybern., 34, 877-887, (2004)
[38] Malinowski, M. T., Random fuzzy fractional integral equations-theoretical foundations, Fuzzy Sets Syst., 265, 39-62, (2015) · Zbl 1361.45010
[39] Min, C.; Huang, N. J.; Zhang, L. H., Existence of local and global solutions of fuzzy delay differential inclusions, Adv. Differ. Equ., 2014, (2014), 14 pages · Zbl 1351.34093
[40] Min, C.; Liu, Z. B.; Zhang, L. H.; Huang, N. J., On a system of fuzzy differential inclusions, Filomat, 29, 1231-1244, (2015) · Zbl 1391.34005
[41] Min, C.; Huang, N. J.; Liu, Z. B.; Zhang, L. H., Existence of solution for implicit fuzzy differential inclusions, Appl. Math. Mech. (English Ed.), 36, 401-416, (2015) · Zbl 1308.34006
[42] Ngo, V. H., Fuzzy fractional functional integral and differential equations, Fuzzy Sets Syst., 280, 58-90, (2015) · Zbl 1377.45002
[43] Ngo, V. H., Fuzzy fractional functional differential equations under Caputo gh-differentiability, Commun. Nonlinear Sci. Numer. Simul., 22, 1134-1157, (2015) · Zbl 1336.34009
[44] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[45] Puri, M. L.; Ralescu, D. A., Differentials of fuzzy functions, J. Math. Anal. Appl., 91, 552-558, (1983) · Zbl 0528.54009
[46] Salahshour, S.; Ahmadian, A.; Ismail, F.; Baleanu, D., A fractional derivative with non-singular kernel for interval-valued functions under uncertainty, Optik, 130, 273-286, (2017)
[47] Salahshour, S.; Ahmadian, A.; Senu, N.; Baleanu, D.; Agarwal, P., On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem, Entropy, 17, 885-902, (2015) · Zbl 1338.34025
[48] Wu, Z. B.; Zou, Y. Z., Global fractional-order projective dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 19, 2811-2819, (2014) · Zbl 1510.34024
[49] Wu, Z. B.; Zou, Y. Z.; Huang, N. J., A system of fractional-order interval projection neural networks, J. Comput. Appl. Math., 294, 389-402, (2016) · Zbl 1329.34013
[50] Wu, Z. B.; Zou, Y. Z.; Huang, N. J., A class of global fractional-order projective dynamical systems involving set-valued perturbations, Appl. Math. Comput., 277, 23-33, (2016) · Zbl 1410.34034
[51] Wu, Z. B.; Zou, Y. Z.; Li, X. S.; Xiao, Y. B., A new class of global fractional-order projective dynamical systems in Hilbert spaces, Commun. Appl. Nonlinear Anal., 24, 1-16, (2017)
[52] Wu, X. K.; Wu, Z. B.; Zou, Y. Z., Sensitivity of the set of solutions for a class of fractional set-valued projected dynamical systems, Nonlinear Anal. Forum, 20, 95-105, (2015) · Zbl 1414.34007
[53] Xia, Y. S.; Wang, J., On the stability of globally projected dynamical systems, J. Optim. Theory Appl., 106, 129-150, (2000) · Zbl 0971.37013
[54] Xia, Y. S., Further results on global convergence and stability of globally projected dynamical systems, J. Optim. Theory Appl., 122, 627-649, (2004) · Zbl 1082.34043
[55] Yannelis, N. C.; Prabhakar, N. D., Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econ., 12, 233-245, (1983) · Zbl 0536.90019
[56] Zhu, Y. G.; Rao, L., Differential inclusions for fuzzy maps, Fuzzy Sets Syst., 112, 257-261, (2000) · Zbl 1001.46051
[57] Zou, Y. Z.; Sun, C. Y., Equilibrium points for two related projective dynamical systems, Commun. Appl. Nonlinear Anal., 19, 4, 109-117, (2012)
[58] Zou, Y. Z.; Li, X.; Huang, N. J.; Sun, C. Y., Global dynamical systems involving generalized f-projection operators and set-valued perturbation in Banach spaces, J. Appl. Math., 2012, (2012), 12 pages · Zbl 1305.47041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.