×

On a problem of Dubinin for the capacity of a condenser with a finite number of plates. (English. Russian original) Zbl 1397.30025

Math. Notes 103, No. 6, 901-910 (2018); translation from Mat. Zametki 103, No. 6, 841-852 (2018).
Summary: It is proved that, in Euclidean \(n\)-space, \(n\geq2\), the weighted capacity (with Muckenhoupt weight) of a condenser with a finite number of plates is equal to the weighted modulus of the corresponding configuration of finitely many families of curves. For \(n = 2\), in the conformal case, this equality solves a problem posed by Dubinin.

MSC:

30C75 Extremal problems for conformal and quasiconformal mappings, other methods
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
Full Text: DOI

References:

[1] A. V. Sychev, Moduli and Spatial Quasiconformal Mappings (Novosibirsk. Gos. Univ., Novosibirsk, 1983) [in Russian]. · Zbl 0528.30002
[2] M. Ohtsuka, Extremal Length and Precise Functions (Gakkōtosho, Tokyo, 2003). · Zbl 1075.31001
[3] L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory (McGraw-Hill, New York, 1973). · Zbl 0272.30012
[4] Dubinin, V. N., Methods of geometric function theory in classical and modern problems for polynomials, UspekhiMat. Nauk, 67, 3-88, (2012) · Zbl 1267.30012 · doi:10.4213/rm9488
[5] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory (Birkhäuser, Basel, 2014). · Zbl 1305.30002 · doi:10.1007/978-3-0348-0843-9
[6] Dubinin, V., Some unsolved problems about condenser capacities on the plane, 81-92, (2018), Cham · Zbl 1405.31003 · doi:10.1007/978-3-319-70154-7_5
[7] Jenkins, J. A., Some problems in conformal mapping, Trans. Amer.Math. Soc., 67, 327-350, (1949) · Zbl 0036.04902 · doi:10.1090/S0002-9947-1949-0032748-X
[8] Kuz’mina, G. V., The general coefficient theorem of Jenkins and the method of modules of curve families, 140-156, (2014), St. Petersburg.
[9] V. V. Aseev and B. Yu. Sultanov, Moduli of Polycondensers and Isomorphisms of Spaces of Traces of Continuous Functions of Class W1 n Preprint no. 31 (IM SO AN SSSR, Novosibirsk, 1989) [in Russian].
[10] H. Federer, GeometricMeasure Theory (Springer-Verlag, Berlin-New York, 1978; Nauka, Moscow, 1987).
[11] J. Väisälä, Lectures on n-Dimensional QuasiconformalMappings, in Lecture Notes in Math. (Springer-Verlag, Berlin, 1971), Vol.229. · Zbl 0221.30031
[12] V. M. Gol’dshtein and Yu. G. Reshetnyak, Introduction to the Theory of Functions with Generalized Derivatives and Quasiconformal Mappings (Nauka, Moscow, 1983) [in Russian]. · Zbl 0591.46021
[13] Hesse, J., A p-extremal length and p-capacity equality, Ark. Mat., 13, 131-144, (1975) · Zbl 0302.31009 · doi:10.1007/BF02386202
[14] Dymchenko, Yu. V.; Shlyk, V. A., Sufficiency of broken lines in the modulus method and removable sets, Sibirsk. Mat. Zh., 51, 1298-1315, (2010) · Zbl 1221.30056
[15] Shlyk, V. A.; Yakovlev, A. A., Modules of space configuration and removable sets, 275-288, (2016), St. Petersburg.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.