×

An active fault-tolerant control framework against actuator stuck failures under input saturations. (English) Zbl 1396.93044

Summary: In this paper, a control framework including active Fault-Tolerant Control (FTC) and reference redesign is developed subject to actuator stuck failures under input saturations. FTC synthesis and reference redesign approaches are proposed to guarantee post-fault system safety and reference reachability. Then, these features are analyzed under both actuator stuck failures and constraints before fault-tolerant controller switches. As the main contribution, actuator stuck failures and constraints are unified so that they can be easily considered simultaneously. By means of transforming stuck failures into actuator constraints, the post-fault system can be regarded as an equivalent system with only asymmetrical actuator constraints. Thus, methods against actuator saturations can be used to guarantee regional stability and produce the stability region. Based on this region, stuck compensation is analyzed. Specifically, an unstable open-loop system is considered, which is more challenging. Furthermore, the method is extended to a set-point tracking problem where the reachability of the original reference can be evaluated. Then, a new optimal reference will be computed for the post-fault system if the original one is unreachable. Finally, simulation examples are shown to illustrate the theoretical results.

MSC:

93B35 Sensitivity (robustness)
93B40 Computational methods in systems theory (MSC2010)

References:

[1] Benhayoun, M., Benzaouia, A., Mesquine, F. and Hajjaji, A.E. (2013). System stabilization by unsymmetrical saturated state feedback control, 9th Asian Control Conference (ASCC), Istanbul, Turkey, pp. 1-5.
[2] Cen, Z., Noura, H. and Younes, Y.A. (2015). Systematic fault tolerant control based on adaptive Thau observer estimation for quadrotor UAVs, International Journal of Applied Mathematics and Computer Science 25(1): 159-147, DOI: 10.1515/amcs-2015-0012. · Zbl 1322.93035
[3] Chen, J. and Patton, R.J. (2012). Robust Model-based Fault Diagnosis for Dynamic Systems, Vol. 3, Springer, Boston, MA. · Zbl 0920.93001
[4] da Silva, J.M.G. and Tarbouriech, S. (2005). Antiwindup design with guaranteed regions of stability: An LMI-based approach, IEEE Transactions on Automatic Control 50(1): 106-111. · Zbl 1365.93443
[5] Dardinier-Maron, V., Hamelin, F. and Noura, H. (1999). A fault-tolerant control design against major actuator failures: Application to a three-tank system, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, Vol. 4, pp. 3569-3574.
[6] Famularo, D., Franz, G. and Lucia, W. (2015). Multiple stuck positions actuator faults: A model predictive based reconfigurable control scheme, IEEE Conference on Decision and Control, Osaka, Japan pp. 5091-5096.
[7] Hu, T., Lin, Z. and Chen, B. M. (2002). An analysis and design method for linear systems subject to actuator saturation and disturbance, Automatica 38(2): 351-359. · Zbl 0991.93044
[8] Jiang, B. and Chowdhury, F.N. (2005). Fault estimation and accommodation for linear MIMO discrete-time systems, IEEE Transactions on Control Systems Technology 13(3): 493-499.
[9] Jiang, B., Staroswiecki, M. and Cocquempot, V. (2006). Fault accommodation for nonlinear dynamic systems, IEEE Transactions on Automatic Control 51(9): 1578-1583. · Zbl 1366.93694
[10] Li, Y. and Lin, Z. (2013). Design of saturation-based switching anti-windup gains for the enlargement of the domain of attraction, IEEE Transactions on Automatic Control 58(7): 1810-1816. · Zbl 1369.93250
[11] Noura, H., Theilliol, D., Ponsart, J. and Chamseddine, A. (2009). Fault-tolerant Control Systems: Design and Practical Applications, Advances in Industrial Control, Springer, Berlin/Heidelberg. · Zbl 1215.93052
[12] Ossmann, D. and Varga, A. (2015). Detection and identification of loss of efficiency faults of flight actuators, International Journal of Applied Mathematics and Computer Science 25(1): 53-63, DOI: 10.1515/amcs-2015-0004. · Zbl 1322.93040
[13] Pascal, G. and Pierre, A. (1994). A linear matrix inequality approach to H∞ control, International Journal of Robust and Nonlinear Control 4(4): 421-448. · Zbl 0808.93024
[14] Qi, X., Qi, J., Theilliol, D., Zhang D., Han, J. and Song, D. (2014). A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles, Journal of Intelligent & Robotic Systems 73(1-4): 535-555.
[15] Tabatabaeipour, S.M. and Blanke, M. (2014). Calculation of critical fault recovery time for nonlinear systems based on region of attraction analysis, World Congress of the International Federation of Automatic Control, Cape Town, South Africa, pp. 6741-6746.
[16] Theilliol, D., Join, D. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553-560, DOI: 10.2478/v10006-008-0048-1. · Zbl 1155.93402
[17] Wu, F. and Soto, M. (2003). Extended LTI anti-windup control with actuator magnitude and rate saturations, 42nd IEEE Conference on Decision and Control, Maui, HI, USA, Vol. 3, pp. 2786-2791.
[18] Wu, L.B., Yang, G.H. and Ye, D. (2014). Robust adaptive fault-tolerant control for linear systems with actuator failures and mismatched parameter uncertainties, IET Control Theory & Applications 8(6): 441-449.
[19] Xu, D., Jiang, B. and Shi, P. (2015). Robust NSV fault-tolerant control system design against actuator faults and control surface damage under actuator dynamics, IEEE Transactions on Industrial Electronics 62(9): 5919-5928.
[20] Xu, F., Puig, V., Ocampo-Martinez, C., Olaru, S. and Niculescu, S.-I. (2017). Robust MPC for actuator-fault tolerance using set-based passive fault detection and active fault isolation, International Journal of Applied Mathematics and Computer Science 27(1): 43-61, DOI: 10.1515/amcs-2017-0004. · Zbl 1367.93171
[21] Yang, G.H., Wang, H. and Xie, L. (2010). Fault detection for output feedback control systems with actuator stuck faults: A steady-state-based approach, International Journal of Robust and Nonlinear Control 20(15): 1739-1757. · Zbl 1204.93056
[22] Zhang, Y. and Jiang, J. (2003). Fault tolerant control system design with explicit consideration of performance degradation, IEEE Transactions on Aerospace and Electronic Systems 39(3): 838-848.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.