×

A structure-preserving pivotal method for affine variational inequalities. (English) Zbl 1396.90087

Summary: Affine variational inequalities (AVI) are an important problem class that subsumes systems of linear equations, linear complementarity problems and optimality conditions for quadratic programs. This paper describes PathAVI, a structure-preserving pivotal approach, that can efficiently process (solve or determine infeasible) large-scale sparse instances of the problem with theoretical guarantees and at high accuracy. PathAVI implements a strategy known to process models with good theoretical properties without reducing the problem to specialized forms, since such reductions may destroy sparsity in the models and can lead to very long computational times. We demonstrate formally that PathAVI implicitly follows the theoretically sound iteration paths, and can be implemented in a large scale setting using existing sparse linear algebra and linear programming techniques without employing a reduction. We also extend the class of problems that PathAVI can process. The paper illustrates the effectiveness of our approach by comparison to the Path solver used on a complementarity reformulation of the AVI in the context of applications in friction contact and Nash Equilibria. PathAVI is a general purpose solver, and freely available under the same conditions as Path.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
90C49 Extreme-point and pivoting methods
65K10 Numerical optimization and variational techniques
65K15 Numerical methods for variational inequalities and related problems

References:

[1] Acary, V., Brémond, M., Koziara, T., Pérignon, F.: FCLIB: a collection of discrete 3D Frictional Contact problems. Technical Report RT-0444, INRIA. https://hal.inria.fr/hal-00945820 (2014) · Zbl 0777.90063
[2] Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2008) · Zbl 1173.74001
[3] Acary V., Brémond M., Huber O., Pérignon F., Sinclair, S.: An introduction to SICONOS, Rapport Technique, INRIA (2017) · Zbl 0759.90063
[4] Bixby, R.E.: Implementing the simplex method: the initial basis. ORSA J. Comput. 4(3), 267-284 (1992) · Zbl 0759.90063 · doi:10.1287/ijoc.4.3.267
[5] Cao, M., Ferris, M.C.: Lineality removal for copositive-plus normal maps. Commun. Appl. Nonlinear Anal. 2, 1-10 (1995) · Zbl 0857.90125
[6] Cao, M., Ferris, M.C.: A pivotal method for affine variational inequalities. Math. Oper. Res. 21(1), 44-64 (1996) · Zbl 0846.90110 · doi:10.1287/moor.21.1.44
[7] Cottle, R., Pang, J.S., Stone, R.: The Linear Complementarity Problem. No. 60 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2009) · Zbl 1192.90001 · doi:10.1137/1.9780898719000
[8] Davis, T.A.: UMFPACK. http://faculty.cse.tamu.edu/davis/suitesparse.html (2007)
[9] Dirkse, S.P., Ferris, M.C.: The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optim. Methods Softw. 5(2), 123-156 (1995) · doi:10.1080/10556789508805606
[10] Dirkse, S.P., Ferris, M.C.: A pathsearch damped newton method for computing general equilibria. Ann. Oper. Res. 68(2), 211-232 (1996) · Zbl 0868.90012 · doi:10.1007/BF02209613
[11] Dirkse, S.P., Ferris, M.C.: Crash techniques for large-scale complementarity problems. In: Ferris, M.C., Pang J.S. (eds.) Complementarity and Variational Problems: State of the Art. SIAM, Philadelphia (1997) · Zbl 0886.90150
[12] Dubois, F., Jean, M., Renouf, M., Mozul, R., Martin, A., Bagneris, M.: LMGC90. In: 10e colloque national en calcul des structures. Giens. https://hal.archives-ouvertes.fr/hal-00596875 (2011) · Zbl 0868.90012
[13] Eaves, B.C.: A short course in solving equations with PL homotopies. Nonlinear Programming. In: SIAM-AMS Proceedings, vol. 9, pp. 73-143 (1976) · Zbl 0343.47048
[14] Eldersveld, S.K., Saunders, M.A.: A block-lu update for large-scale linear programming. SIAM J. Matrix Anal. Appl. 13(1), 191-201 (1992) · Zbl 0753.65050 · doi:10.1137/0613016
[15] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003) · Zbl 1062.90002
[16] Ferris, M.C., Dirkse, S.P., Jagla, J.H., Meeraus, A.: An extended mathematical programming framework. Comput. Chem. Eng. 33(12), 1973-1982 (2009) · doi:10.1016/j.compchemeng.2009.06.013
[17] Ferris, M.C., Munson, T.S.: PATH 4.7. http://www.gams.com/dd/docs/solvers/path (2013)
[18] Huber, O., Ferris, M.C.: Friction contact problems from a variational inequality perspective (2016) (in preparation) · Zbl 0868.90012
[19] Klarbring, A., Pang, J.S.: Existence of solutions to discrete semicoercive frictional contact problems. SIAM J. Optim. 8(2), 414-442 (1998) · Zbl 0961.74046 · doi:10.1137/S105262349629784X
[20] Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11(7), 681-689 (1965) · Zbl 0139.13103 · doi:10.1287/mnsc.11.7.681
[21] Liu, J.: Strong stability in variational inequalities. SIAM J. Control Optim. 33(3), 725-749 (1995) · Zbl 0834.90128 · doi:10.1137/S0363012992240527
[22] Maros, I.: QP examples. http://www.doc.ic.ac.uk/ im/00README.QP (1998) · Zbl 0857.90125
[23] Murty, K.G.: Linear and Combinatorial Programming. Wiley, New York (1976) · Zbl 0334.90032
[24] Robinson, S.M.: Generalized equations and their solutions, part I: basic theory. Math. Program. Study 10, 128-141 (1979) · Zbl 0404.90093 · doi:10.1007/BFb0120850
[25] Robinson, S.M.: Normal maps induced by linear transformations. Math. Oper. Res. 17(3), 691-714 (1992) · Zbl 0777.90063 · doi:10.1287/moor.17.3.691
[26] Robinson, S.M.: Convexity in Finite-Dimensional Spaces (2015) (unpublished manuscript)
[27] Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401 · doi:10.1515/9781400873173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.