×

(non) supersymmetric quantum quenches. (English) Zbl 1396.81104

Summary: We explore supersymmetric quantum quenches of the mass and coupling constants in the \(N = 1\) supersymmetric vector model using Hartree-Fock approximation. We find that in the case of the free fermionic field, quench of the mass generates singularity localized at the instant of sudden change and we point out the essential role of the parity of spacetime. Focusing on a supersymmetric generalization of the \(\phi^6\) model and using stationary phase approximation, we demonstrate that supersymmetry is broken in the asymptotic state that emerges at late times after the quench. Finally, we confirm SUSY breaking in the time-dependent setting by integrating numerically the exact equations of motion from the instant of the quench into asymptotic regime. The breaking of supersymmetry cannot be directly attributed to the thermal physics since to leading order in the Hartree-Fock approximation the model is integrable and therefore thermalization does not occur.

MSC:

81Q60 Supersymmetry and quantum mechanics
81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] M. Greiner, O. Mandel, T.W. Hänsch and I. Bloch, Collapse and revival of the matter wave field of a Bose-Einstein condensate, Nature419 (2002) 51 [cond-mat/0207196]. · doi:10.1038/nature00968
[2] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm and J. Schmiedmayer, Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature449 (2007) 324 [arXiv:0706.2259]. · doi:10.1038/nature06149
[3] T. Kinoshita, T. Wenger and D.S. Weiss, A quantum Newton’s cradle, Nature440 (2006) 900. · doi:10.1038/nature04693
[4] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[5] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048
[6] S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP07 (2010) 071 [arXiv:1005.3348] [INSPIRE]. · Zbl 1290.81090 · doi:10.1007/JHEP07(2010)071
[7] T. Albash and C.V. Johnson, Evolution of Holographic Entanglement Entropy after Thermal and Electromagnetic Quenches, New J. Phys.13 (2011) 045017 [arXiv:1008.3027] [INSPIRE]. · Zbl 1448.83015 · doi:10.1088/1367-2630/13/4/045017
[8] H. Ebrahim and M. Headrick, Instantaneous Thermalization in Holographic Plasmas, arXiv:1010.5443 [INSPIRE].
[9] V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett.106 (2011) 191601 [arXiv:1012.4753] [INSPIRE]. · doi:10.1103/PhysRevLett.106.191601
[10] V. Balasubramanian et al., Holographic Thermalization, Phys. Rev.D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].
[11] V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev.D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].
[12] J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP12 (2011) 082 [arXiv:1109.3571] [INSPIRE]. · Zbl 1306.81145 · doi:10.1007/JHEP12(2011)082
[13] A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP01 (2012) 102 [arXiv:1110.1607] [INSPIRE]. · Zbl 1306.81144 · doi:10.1007/JHEP01(2012)102
[14] V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev.D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].
[15] P. Basu and S.R. Das, Quantum quench across a holographic critical point, JHEP01 (2012) 103 [arXiv:1109.3909] [INSPIRE]. · Zbl 1306.81191 · doi:10.1007/JHEP01(2012)103
[16] S.R. Das, Holographic quantum quench, J. Phys. Conf. Ser.343 (2012) 012027 [arXiv:1111.7275] [INSPIRE]. · doi:10.1088/1742-6596/343/1/012027
[17] D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP07 (2012) 096 [arXiv:1205.1548] [INSPIRE]. · doi:10.1007/JHEP07(2012)096
[18] E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP09 (2012) 055 [arXiv:1205.2354] [INSPIRE]. · doi:10.1007/JHEP09(2012)055
[19] I.Y. Arefeva and I. Volovich, On holographic thermalization and dethermalization of quark-gluon plasma, arXiv:1211.6041 [INSPIRE].
[20] P. Basu, D. Das, S.R. Das and T. Nishioka, Quantum quench across a zero temperature holographic superfluid transition, JHEP03 (2013) 146 [arXiv:1211.7076] [INSPIRE]. · Zbl 1342.83229 · doi:10.1007/JHEP03(2013)146
[21] W. Baron, D. Galante and M. Schvellinger, Dynamics of holographic thermalization, JHEP03 (2013) 070 [arXiv:1212.5234] [INSPIRE]. · doi:10.1007/JHEP03(2013)070
[22] P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett.96 (2006) 136801 [cond-mat/0601225] [INSPIRE]. · doi:10.1103/PhysRevLett.96.136801
[23] G. Roux, Quenches in quantum many-body systems: one-dimensional Bose-Hubbard model reexamined, Phys. Rev.A 79 (2009) 021608 [arXiv:0810.3720].
[24] M.A. Cazalilla, Effect of suddenly turning on interactions in the luttinger model, Phys. Rev. Lett.97 (2006) 156403. · doi:10.1103/PhysRevLett.97.156403
[25] C. Kollath, A.M. Läuchli and E. Altman, Quench dynamics and nonequilibrium phase diagram of the Bose-Hubbard model, Phys. Rev. Lett.98 (2007) 180601 [cond-mat/0607235]. · doi:10.1103/PhysRevLett.98.180601
[26] S.R. Manmana, S. Wessel, R.M. Noack and A. Muramatsu, Strongly correlated fermions after a quantum quench, Phys. Rev. Lett.98 (2007) 210405 [cond-mat/0612030]. · doi:10.1103/PhysRevLett.98.210405
[27] P. Calabrese, F.H.L. Essler and M. Fagotti, Quantum quench in the transverse-field ising chain, Phys. Rev. Lett.106 (2011) 227203 [arXiv:1104.0154]. · doi:10.1103/PhysRevLett.106.227203
[28] M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature452 (2008) 854 [arXiv:0708.1324]. · doi:10.1038/nature06838
[29] T. Caneva, E. Canovi, D. Rossini, G.E. Santoro and A. Silva, Applicability of the generalized Gibbs ensemble after a quench in the quantum Ising chain, J. Stat. Mech. (2011) P07015 [arXiv:1105.3176].
[30] S. Sotiriadis and J. Cardy, Quantum quench in interacting field theory: A Self-consistent approximation, Phys. Rev.B 81 (2010) 134305 [arXiv:1002.0167] [INSPIRE].
[31] S. Weinberg, Effective field theories in the large-N limit, Phys. Rev.D 56 (1997) 2303 [hep-th/9706042] [INSPIRE].
[32] M. Moshe and J. Zinn-Justin, Quantum field theory in the large-N limit: a review, Phys. Rept.385 (2003) 69 [hep-th/0306133] [INSPIRE]. · Zbl 1031.81065 · doi:10.1016/S0370-1573(03)00263-1
[33] L.-Y. Hung, M. Smolkin and E. Sorkin, Modification of late time phase structure by quantum quenches, Phys. Rev. Lett.109 (2012) 155702 [arXiv:1206.2685] [INSPIRE]. · doi:10.1103/PhysRevLett.109.155702
[34] W.A. Bardeen, K. Higashijima and M. Moshe, Spontaneous Breaking of Scale Invariance in a Supersymmetric Model, Nucl. Phys.B 250 (1985) 437 [INSPIRE]. · doi:10.1016/0550-3213(85)90490-0
[35] J. Feinberg, M. Moshe, M. Smolkin and J. Zinn-Justin, Spontaneous breaking of scale invariance and supersymmetric models at finite temperature, Int. J. Mod. Phys.A 20 (2005) 4475 [INSPIRE]. · Zbl 1075.81060 · doi:10.1142/S0217751X05028090
[36] D.F. Litim, M.C. Mastaler, F. Synatschke-Czerwonka and A. Wipf, Critical behavior of supersymmetric O(N) models in the large-N limit, Phys. Rev.D 84 (2011) 125009 [arXiv:1107.3011] [INSPIRE].
[37] M. Heilmann, D.F. Litim, F. Synatschke-Czerwonka and A. Wipf, Phases of supersymmetric O(N) theories, Phys. Rev.D 86 (2012) 105006 [arXiv:1208.5389] [INSPIRE].
[38] M. Moshe and J. Zinn-Justin, Phase structure of supersymmetric models at finite temperature, Nucl. Phys.B 648 (2003) 131 [hep-th/0209045] [INSPIRE]. · Zbl 1005.81083 · doi:10.1016/S0550-3213(02)00933-1
[39] P. Townsend, Spontaneous Symmetry Breaking in O(n) Symmetric ϕ6Theory in the 1/nExpansion, Phys. Rev.D 12 (1975) 2269 [Erratum ibid.D 16 (1977) 533] [INSPIRE].
[40] P.K. Townsend, The Global Ground State of ϕ6Theory in Three-Dimensions, Phys. Rev.D 14 (1976) 1715 [INSPIRE].
[41] P. Townsend, Consistency of the 1/n Expansion for Three-Dimensional ϕ6Theory, Nucl. Phys.B 118 (1977) 199 [INSPIRE]. · doi:10.1016/0550-3213(77)90306-6
[42] T. Appelquist and U.W. Heinz, Three-dimensional O(N) theories at large distances, Phys. Rev.D 24 (1981) 2169 [INSPIRE].
[43] T. Appelquist and U.W. Heinz, Vacuum Stability in Three-dimensional O(N) Theories, Phys. Rev.D 25 (1982) 2620 [INSPIRE].
[44] R. Pisarski, Fixed point structure of (ϕ6) in three-dimensions at large-N , Phys. Rev. Lett.48 (1982) 574 [INSPIRE]. · doi:10.1103/PhysRevLett.48.574
[45] W.A. Bardeen, M. Moshe and M. Bander, Spontaneous Breaking of Scale Invariance and the Ultraviolet Fixed Point in O(n) Symmetric (ϕ6in Three-Dimensions) Theory, Phys. Rev. Lett.52 (1984) 1188 [INSPIRE]. · doi:10.1103/PhysRevLett.52.1188
[46] D.J. Amit and E. Rabinovici, Breaking of Scale Invariance in ϕ6Theory: Tricriticality and Critical End Points, Nucl. Phys.B 257 (1985) 371 [INSPIRE]. · doi:10.1016/0550-3213(85)90351-7
[47] E. Rabinovici and M. Smolkin, On the dynamical generation of the Maxwell term and scale invariance, JHEP07 (2011) 040 [arXiv:1102.5035] [INSPIRE]. · Zbl 1298.81199 · doi:10.1007/JHEP07(2011)040
[48] B. Craps, T. Hertog and N. Turok, A multitrace deformation of ABJM theory, Phys. Rev.D 80 (2009) 086007 [arXiv:0905.0709] [INSPIRE].
[49] V. Asnin, E. Rabinovici and M. Smolkin, On rolling, tunneling and decaying in some large-N vector models, JHEP08 (2009) 001 [arXiv:0905.3526] [INSPIRE]. · doi:10.1088/1126-6708/2009/08/001
[50] J. Barbon and E. Rabinovici, AdS crunches, CFT falls and cosmological complementarity, JHEP04 (2011) 044 [arXiv:1102.3015] [INSPIRE]. · Zbl 1250.83062 · doi:10.1007/JHEP04(2011)044
[51] M. Smolkin and N. Turok, Dual description of a 4d cosmology, arXiv:1211.1322 [INSPIRE].
[52] O. Aharony, G. Gur-Ari and R. Yacoby, D = 3 bosonic vector models coupled to Chern-Simons gauge theories, JHEP03 (2012) 037 [arXiv:1110.4382] [INSPIRE]. · Zbl 1309.81175 · doi:10.1007/JHEP03(2012)037
[53] O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The thermal free energy in large-N Chern-Simons-Matter theories, JHEP03 (2013) 121 [arXiv:1211.4843] [INSPIRE]. · doi:10.1007/JHEP03(2013)121
[54] A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2* plasmas, JHEP08 (2012) 049 [arXiv:1206.6785] [INSPIRE]. · doi:10.1007/JHEP08(2012)049
[55] A. Buchel, L. Lehner, R.C. Myers and A. van Niekerk, Quantum quenches of holographic plasmas, JHEP05 (2013) 067 [arXiv:1302.2924] [INSPIRE]. · doi:10.1007/JHEP05(2013)067
[56] A. Buchel, R.C. Myers and A. van Niekerk, Universality of abrupt holographic quenches, arXiv:1307.4740 [INSPIRE]. · Zbl 1388.83092
[57] S.R. Das and K. Sengupta, Non-equilibrium dynamics of O(N) nonlinear σ-models: a large-N approach, JHEP09 (2012) 072 [arXiv:1202.2458] [INSPIRE]. · doi:10.1007/JHEP09(2012)072
[58] S. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace Or One Thousand and One Lessons in Supersymmetry, Front. Phys.58 (1983) 1 [hep-th/0108200] [INSPIRE]. · Zbl 0986.58001
[59] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd edition, Cambridge University Press, Cambridge U.K. (1992). · Zbl 0778.65002
[60] A. Chandran, A. Nanduri, S.S. Gubser and S.L. Sondhi, Equilibration and coarsening in the quantum O(N) model at infinite N, Phys. Rev.B 88 (2013) 024306 [arXiv:1304.2402].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.