×

An open source virtual laboratory for the Schrödinger equation. (English) Zbl 1396.81009

Summary: A simple Python-based open source software library for the numerical simulation of the linear or nonlinear time-dependent Schrödinger equation in one and two dimensions is presented. The integration is performed using a first-order split-step pseudospectral method, relying on the fast Fourier transform. The software library could be useful for undergraduate courses in elementary quantum mechanics, wave optics and computational physics. It could also be of interest for graduate students working with nonlinear waves, in frameworks such as laser beam propagation in nonlinear optical materials, matter waves within ultracold gases, dark matter or superfluid dynamics, among others. The discussion is complemented by solved examples and suggestions for educational applications of the code.

MSC:

81-08 Computational methods for problems pertaining to quantum theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
78A40 Waves and radiation in optics and electromagnetic theory
97M50 Physics, astronomy, technology, engineering (aspects of mathematics education)

Software:

Python; BPM; Matlab

References:

[1] De Jong, T.; Linn, M. C.; Zacharia, Z. C., Physical and virtual laboratories in science and engineering education, Science, 340, 305-308, (2013) · doi:10.1126/science.1230579
[2] Zacharia, Z. C.; Olympiou, G.; Papaevripidou, M., Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature, J. Res. Sci. Teach., 45, 1021-1035, (2008) · doi:10.1002/tea.20260
[3] Hatherly, P. A.; Jordan, S. E.; Cayless, A., Interactive screen experiments-innovative virtual laboratories for distance learners, Eur. J. Phys., 30, 751-762, (2009) · doi:10.1088/0143-0807/30/4/008
[5] Teich, M. C.; Saleh, B. E A., Fundamentals of Photonics, (2007), New York: Wiley, New York
[6] Hasegawa, A.; Tappert, F., Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion, Appl. Phys. Lett., 23, 142-144, (1973) · doi:10.1063/1.1654836
[7] Davydov, A. S., Solitons in molecular systems, Phys. Scr., 20, 387-394, (1979) · Zbl 1063.81686 · doi:10.1088/0031-8949/20/3-4/013
[8] Burger, S.; Bongs, D.; Dettmer, S.; Ertmer, W.; Sengstock, K.; Sanpera, A.; Shlyapnikov, G.; Lewenstein, M., Dark solitons in Bose–Einstein condensates, Phys. Rev. Lett., 83, 5198-5201, (1999) · doi:10.1103/PhysRevLett.83.5198
[9] Paredes, A.; Michinel, H., Interference of dark matter solitons and galactic offsets, Phys. Dark Univ., 12, 50-55, (2016) · doi:10.1016/j.dark.2016.02.003
[10] Briscese, F., The Schrödinger–Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics, Eur. Phys. J. C, 77, 623, (2017) · doi:10.1140/epjc/s10052-017-5209-7
[11] Schmidt, J. D., Numerical Simulation of Optical Wave Propagation with Examples in MATLAB, (2010), Bellingham, WA: SPIE , Bellingham, WA
[12] Gould, H.; Tobochnik, J.; Christian, W., An Introduction to Computer Simulation Methods, (2016), New York: Addison-Wesley, New York
[13] Orquín, I.; Garcí a-March, M. A.; Fernandez de Córdoba, P.; Urcheguí, A. J F.; Monsoriu, J. A., Introductory quantum physics courses using a LabVIEW multimedia module, Comput. Appl. Eng. Educ., 15, 124-133, (2007) · doi:10.1002/cae.20100
[14] Cambronero-López, F.; Gómez-Varela, A.; Bao-Varela, C., Designing an ultrafast laser virtual laboratory using Matlab Guide, Eur. J. Phys., 38, (2017) · doi:10.1088/1361-6404/aa5a93
[15] Chhabra, M.; Das, R., Quantum mechanical wavefunction: visualization at undergraduate level, Eur. J. Phys., 38, (2016) · doi:10.1088/0143-0807/38/1/015404
[16] Fleck, J. Jr; Morris, J.; Feit, M., Time-dependent propagation of high energy laser beams through the atmosphere, Appl. Phys., 10, 129-160, (1976) · doi:10.1007/BF00896333
[17] Agrawal, G. P., Nonlinear Fiber Optics, (2007), Burlington, VA: Academic, Burlington, VA
[18] Landau, R. H.; Páez, M. J.; Bordeianu, C. C., Computational Physics: Problem Solving with Python, (2015), New York: Wiley, New York · Zbl 1341.70001
[19] Newman, M., Computational Physics, (2013), North Charleston, SC: CreateSpace Independent Publ., North Charleston, SC
[20] Kiriushcheva, N.; Kuzmin, S., Scattering of a Gaussian wave packet by a reflectionless potential, Am. J. Phys., 66, 867-872, (1998) · doi:10.1119/1.18985
[21] Sulem, C.; Sulem, P-L, The Nonlinear Schrödinger equation: Self-Focusing and Wave Collapse, (1999), New York: Springer, New York · Zbl 0928.35157
[22] Fibich, G., The Nonlinear Schrödinger equation, (2015), Cham: Springer, Cham · Zbl 1351.35001
[23] Zakharov, V. E.; Shabat, A. B., Exact theory of two-dimensional self-focussing and one-dimensional self-modulating waves in nonlinear media, Sov. Phys.—JETP, 34, 62-69, (1972)
[24] Rodas-Verde, M. I.; Michinel, H.; Pérez-García, V. M., Controllable soliton emission from a Bose–Einstein condensate, Phys. Rev. Lett., 95, (2005) · doi:10.1103/PhysRevLett.95.153903
[25] Michinel, H.; Paredes, A.; Valado, M. M.; Feijoo, D., Coherent emission of atomic soliton pairs by Feshbach-resonance tuning, Phys. Rev. A, 86, (2012) · doi:10.1103/PhysRevA.86.013620
[26] Carpentier, A. V.; Michinel, H.; Salgueiro, J. R.; Olivieri, D., Making optical vortices with computer-generated holograms, Am. J. Phys., 76, 916-921, (2008) · doi:10.1119/1.2955792
[27] Rogel-Salazar, J., The Gross–Pitaevskii equation and Bose–Einstein condensates, Eur. J. Phys., 34, 247, (2013) · Zbl 1267.82037 · doi:10.1088/0143-0807/34/2/247
[28] Couairon, A.; Mysyrowicz, A., Femtosecond filamentation in transparent media, Phys. Rep., 441, 47-189, (2007) · doi:10.1016/j.physrep.2006.12.005
[29] Biasi, A.; Bizon, P.; Craps, B.; Evnin, O., Exact lowest-Landau-level solutions for vortex precession in Bose–Einstein condensates, Phys. Rev. A, 96, (2017) · doi:10.1103/PhysRevA.96.053615
[30] Wu, W.; Zhang, Y.; Yuan, C.; Wen, F.; Zheng, H.; Zhang, Y.; Xiao, M., Cubic-quintic condensate solitons in four-wave mixing, Phys. Rev. A, 88, (2013) · doi:10.1103/PhysRevA.88.063828
[31] Michinel, H.; Campo-Táboas, J.; García-Fernández, R.; Salgueiro, J. R.; Quiroga-Teixeiro, M., Liquid light condensates, Phys. Rev. E, 65, (2002) · doi:10.1103/PhysRevE.65.066604
[32] Lehtovaara, L.; Toivanen, J.; Eloranta, J., Solution of time-independent Schrödinger equation by the imaginary time propagation method, J. Comput. Phys., 221, 148-157, (2007) · Zbl 1110.65096 · doi:10.1016/j.jcp.2006.06.006
[33] Shao, J.; Liang, X.; Kumar, S., Comparison of split-step Fourier schemes for simulating fiber optic communication systems, IEEE Photonics J., 6, 1-15, (2014) · doi:10.1109/JPHOT.2014.2340993
[34] Muslu, G. M.; Erbay, H. A., Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation, Math. Comput. Simul., 67, 581-595, (2005) · Zbl 1064.65117 · doi:10.1016/j.matcom.2004.08.002
[35] Minner, D. D.; Levy, A. J.; Century, J., Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984–2002, J. Res. Sci. Teach., 47, 474-496, (2010) · doi:10.1002/tea.20347
[36] Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F., The experiment editor: supporting inquiry-based learning with virtual labs, Eur. J. Phys., 38, (2017) · doi:10.1088/1361-6404/aa5dc1
[37] van Dijk, W.; Toyama, F. M.; Prins, S. J.; Spyksma, K., Analytic time-dependent solutions of the one-dimensional Schrödinger equation, Am. J. Phys., 82, 955-961, (2014) · doi:10.1119/1.4885376
[38] Kivshar, Y. S.; Luther-Davies, B., Dark optical solitons: physics and applications, Phys. Rep., 298, 81-197, (1998) · doi:10.1016/S0370-1573(97)00073-2
[39] Kim, W-S; Moon, H-T, Soliton-kink interactions in a generalized nonlinear Schrödinger system, Phys. Lett. A, 266, 364-369, (2000) · Zbl 0947.35150 · doi:10.1016/S0375-9601(00)00080-3
[40] Paredes, A.; Feijoo, D.; Michinel, H., Coherent cavitation in the liquid of light, Phys. Rev. Lett., 112, (2014) · doi:10.1103/PhysRevLett.112.173901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.