×

Gradient and size effects on spinodal and miscibility gaps. (English) Zbl 1396.74027

Summary: A thermodynamically consistent model of strain gradient elastodiffusion is developed. Its formulation is based on the enhancement of a robust theory of gradient elasticity, known as GRADELA, to account for a Cahn-Hilliard type of diffusion. Linear stability analysis is employed to determine the influence of concentration and strain gradients on the spinodal decomposition. For finite domains, spherically symmetric conditions are considered, and size effects on spinodal and miscibility gaps are discussed. The theoretical predictions are in agreement with the experimental trends, i.e., both gaps shrink as the grain diameter decreases and they are completely eliminated for crystals smaller than a critical size.

MSC:

74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Zhu, Y; Wang, JW; Liu, Y; Liu, X; Kushima, A; Liu, Y; Xu, Y; Mao, SX; Li, J; Wang, C; Huang, JY, In situ atomic-scale imaging of phase boundary migration in fepo\(_{4}\) microparticles during electrochemical lithiation, Adv. Mater., 25, 5461-5466, (2013) · doi:10.1002/adma.201301374
[2] Padhi, AK; Nanjundaswamy, KS; Goodenough, JB, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 144, 1188-1194, (1997) · doi:10.1149/1.1837571
[3] Chen, G; Song, X; Richardson, TJ, Electron microscopy study of the lifepo\(_{4}\) to fepo\(_{4}\) phase transition, Electrochem. Solid State Lett., 9, a295-a298, (2006) · doi:10.1149/1.2192695
[4] Meethong, N; Huang, H-YS; Carter, WC; Chiang, YM, Size-dependent lithium miscibility gap in nanoscale Li\(_{1-{\rm x}}\)fepo\(_{4}\), Electrochem. Solid State Lett., 10, a134-a138, (2007) · doi:10.1149/1.2710960
[5] Kobayashi, G; Nishimura, SI; Park, MS; Kanno, R; Yashima, M; Ida, T; Yamada, A, Isolation of solid solution phases in size-controlled Li\(_{\rm x}\)fepo\(_{4}\) at room temperature, Adv. Funct. Mater., 19, 395-403, (2009) · doi:10.1002/adfm.200801522
[6] Orvananos, B; Yu, H-C; Malik, R; Abdellahi, A; Grey, CP; Ceder, G; Thornton, K, Effect of a size-dependent equilibrium potential on nano-lifepo\(_{4}\) particle interactions, J. Electrochem. Soc., 162, a1718-a1724, (2015) · doi:10.1149/2.0161509jes
[7] Gibot, P; Casas-Cabanas, M; Laffont, L; Levasseur, S; Carlach, P; Hamelet, S; Tarascon, JM; Masquelier, C, Room-temperature single-phase Li insertion/extraction in nanoscale Li\(_{\rm x}\)fepo\(_{4}\), Nat. Mater., 7, 741-747, (2008) · doi:10.1038/nmat2245
[8] Cahn, JW; Hilliard, JE, Free energy of a nonuniform system. I. interfacial free energy, J. Chem. Phys., 28, 258-267, (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[9] Cahn, JW, On spinodal decomposition, Acta Metall., 9, 795-801, (1961) · doi:10.1016/0001-6160(61)90182-1
[10] Han, BC; Ven, A; Morgan, D; Ceder, G, Electrochemical modeling of intercalation processes with phase field models, Electrochim. Acta, 49, 4691-4699, (2004) · doi:10.1016/j.electacta.2004.05.024
[11] Burch, D; Bazant, MZ, Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles, Nano Lett., 9, 3795-3800, (2009) · doi:10.1021/nl9019787
[12] Cogswell, DA; Bazant, MZ, Coherency strain and the kinetics of phase separation in lifepo\(_{4}\) nanoparticles, ACS Nano, 6, 2215-2225, (2012) · doi:10.1021/nn204177u
[13] Anand, L, A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations, J. Mech. Phys. Solids, 60, 1983-2002, (2012) · Zbl 1270.74060 · doi:10.1016/j.jmps.2012.08.001
[14] Purkayastha, R; McMeeking, R, A parameter study of intercalation of lithium into storage particles in a lithium-ion battery, Comput. Mater. Sci., 80, 2-14, (2013) · doi:10.1016/j.commatsci.2012.11.050
[15] Aifantis, K.E., Hackney, S.A., Kumar, V.R. (eds.): High Energy Density Lithium Batteries: Materials, Engineering, Applications. Wiley-VCH, Weinheim (2010). https://doi.org/10.1002/9783527630011 · doi:10.1002/9783527630011
[16] Tsagrakis, I; Aifantis, EC, Thermodynamic coupling between gradient elasticity and a Cahn-Hilliard type of diffusion: size-dependent spinodal gaps, Continuum Mech. Thermodyn., 29, 1181-1194, (2017) · Zbl 1392.74030 · doi:10.1007/s00161-017-0565-y
[17] Tsagrakis, I; Aifantis, EC; Altenbach, H (ed.); Pouget, J (ed.); Rousseau, M (ed.); Collet, B (ed.); Michelitsch, T (ed.), Gradient elasticity effects on the two-stage lithiation of LIB anodes, (2018), Berlin
[18] Aifantis, EC, Gradient effects at macro, micro and nano scales, J. Mech. Behav. Mater., 5, 355-375, (1994) · doi:10.1515/jmbm.1994.5.3.355
[19] Altan, BS; Aifantis, EC, On some aspects in the special theory of gradient elasticity, J. Mech. Behav. Mater., 8, 231-282, (1997) · doi:10.1515/jmbm.1997.8.3.231
[20] Altan, SB; Aifantis, EC, On the structure of the mode III crack-tip in gradient elasticity, Scr. Metall. Mater., 26, 319-324, (1992) · doi:10.1016/0956-716x(92)90194-j
[21] Ru, CQ; Aifantis, EC, A simple approach to solve boundary value problems in gradient elasticity, Acta Mech., 101, 59-68, (1993) · Zbl 0783.73015 · doi:10.1007/bf01175597
[22] Gutkin, MY; Aifantis, EC, Dislocations in the theory of gradient elasticity, Scr. Mater., 40, 559-566, (1999) · doi:10.1016/s1359-6462(98)00424-2
[23] Aifantis, EC, Strain gradient interpretation of size effects, Int. J. Fract., 95, 299-314, (1999) · doi:10.1007/978-94-011-4659-3_16
[24] Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511762956.071 · doi:10.1017/CBO9780511762956.071
[25] Mindlin, RD, Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78, (1964) · Zbl 0119.40302 · doi:10.1007/bf00248490
[26] Nauman, EB; He, DQ, Nonlinear diffusion and phase separation, Chem. Eng. Sci., 56, 1999-2018, (2001) · doi:10.1016/s0009-2509(01)00005-7
[27] Garcke, H, On a Cahn-Hilliard model for phase separation with elastic misfit, Ann. Inst. H. Poincaré Anal. Nonlin., 22, 165-185, (2005) · Zbl 1072.35081 · doi:10.1016/j.anihpc.2004.07.001
[28] Stanton, L.G., Bazantm M.Z.: Phase separation with anisotropic coherency strain. arXiv: Cond-Mat. Mtrl-Sci. (2012). arXiv:1202.1626v1
[29] van der Waals, J.D.: The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, (translation of Dutch title). Verhandel. Konink. Akad. Weten. Amsterdam (Sect. 1) Vol. 1(8) (1893). J.S. Rowlinson, English translation: (with commentary) J. Stat. Phys. 20(2), 197-244 (1979). https://doi.org/10.1007/BF01011514 · Zbl 1245.82006
[30] Tsagrakis, I.: The role of gradients in elasticity and plasticity. Analytical and numerical applications. Ph.D. thesis, Aristotle University of Thessaloniki, Thessaloniki (2001) (in Greek). http://hdl.handle.net/10442/hedi/23042
[31] Rousse, G; Rodriguez-Carvajal, J; Patoux, S; Masquelier, C, Magnetic structures of the triphylite lifepo\(_{4}\) and of its delithiated form fepo\(_{4}\), Chem. Mater., 15, 4082-4090, (2003) · doi:10.1021/cm0300462
[32] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, Berlin (2006). https://doi.org/10.1007/b98874 · Zbl 0930.65067 · doi:10.1007/b98874
[33] Tsagrakis, I; Aifantis, EC, On the effect of strain gradient on adiabatic shear banding, Metall. Mater. Trans. A, 46, 4459-4467, (2015) · doi:10.1007/s11661-014-2586-5
[34] Rudraraju, S; Ven, A; Garikipati, K, Mechanochemical spinodal decomposition: a phenomenological theory of phase transformations in multi-component, crystalline solids, npj Comput. Mater., 2, 16012, (2016) · doi:10.1038/npjcompumats.2016.12
[35] Triantafyllidis, N; Aifantis, EC, A gradient approach to localization of deformation. I. hyperelastic materials, J. Elast., 16, 225-237, (1986) · Zbl 0594.73044 · doi:10.1007/bf00040814
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.