×

An exact homoclinic orbit and its connection with the Rössler system. (English) Zbl 1396.37027

Summary: In this letter, we consider a three parameter unfolding of a linear degeneracy corresponding to a triple-zero eigenvalue of an equilibrium point. Using blow-up techniques, we obtain a system where an exact homoclinic connection is determined. The numerical continuation of this global connection shows that it exhibits three different kinds of codimension-two degeneracies. Finally, these same codimension-two homoclinic bifurcations are detected in the Rössler system, ensuring in this way the existence of chaotic dynamics.

MSC:

37C29 Homoclinic and heteroclinic orbits for dynamical systems

Software:

HomCont; AUTO; AUTO-07P
Full Text: DOI

References:

[1] Rössler, O. E., An equation for continuous chaos, Phys. Lett. A, 57, 397-398, (1976) · Zbl 1371.37062
[2] Rössler, O. E., Continuous chaos - four prototype equations, Ann. N.Y. Acad. Sci., 316, 376-392, (1979) · Zbl 0437.76055
[3] Yanchuk, S.; Kapitaniak, T., Chaos-hyperchaos transition in coupled Rössler systems, Phys. Lett. A, 290, 139-144, (2001) · Zbl 1023.37018
[4] Yan, Z., Chaos Q-S synchronization between Rössler system and the new unified chaotic system, Phys. Lett. A, 334, 406-412, (2005) · Zbl 1123.37312
[5] Zhang, R.; Hu, M.; Xu, Z., Impulsive synchronization of Rössler systems with parameter driven by an external signal, Phys. Lett. A, 364, 239-243, (2007) · Zbl 1203.34098
[6] Genesio, R.; Innocenti, G.; Gualdani, F., A global qualitative view of bifurcations and dynamics in the Rössler system, Phys. Lett. A, 372, 1799-1809, (2008) · Zbl 1220.37040
[7] Sudheer, K. S.; Sabir, M., Adaptive modified function projective synchronization of multiple time-delayed chaotic rossler system, Phys. Lett. A, 375, 1176-1178, (2011) · Zbl 1242.34098
[8] García, I. A.; Llibre, J.; Maza, S., Periodic orbits and their stability in the Rössler prototype-4 system, Phys. Lett. A, 376, 2234-2237, (2012) · Zbl 1266.34071
[9] Barrio, R.; Blesa, F.; Serrano, S., Qualitative analysis of the Rössler equations: bifurcations of limit cycles and chaotic attractors, Physica D, 238, 1087-1100, (2009) · Zbl 1173.37049
[10] Barrio, R.; Blesa, F.; Dena, A.; Serrano, S., Qualitative and numerical analysis of the Rössler model: bifurcations of equilibria, Comput. Math. Appl., 62, 4140-4150, (2011) · Zbl 1236.65154
[11] Barrio, R.; Blesa, F.; Serrano, S.; Shilnikov, A., Global organization of spiral structures in biparameter space of dissipative systems with shilnikov saddle-foci, Phys. Rev. E, 84, 035201, (2011)
[12] Barrio, R.; Blesa, F.; Serrano, S., Topological changes in periodicity hubs of dissipative systems, Phys. Rev. Lett., 108, 214102, (2012)
[13] Dumortier, F.; Ibáñez, S., Nilpotent singularities in generic 4-parameter families of 3-dimensional vector fields, J. Differ. Equ., 127, 590-647, (1996) · Zbl 0865.58032
[14] Dumortier, F.; Ibáñez, S.; Kokubu, H., New aspects in the unfolding of the nilpotent singularity of codimension three, Dyn. Syst., 16, 63-95, (2001) · Zbl 0993.37026
[15] Dumortier, F.; Ibáñez, S.; Kokubu, H., COCOON bifurcation in three-dimensional reversible vector fields, Nonlinearity, 19, 305-328, (2006) · Zbl 1107.34039
[16] Freire, E.; Gamero, E.; Rodríguez-Luis, A. J.; Algaba, A., A note on the triple zero linear degeneracy: normal forms, dynamical and bifurcation behavior of an unfolding, Int. J. Bifurc. Chaos Appl. Sci. Eng., 12, 2799-2820, (2002) · Zbl 1043.37042
[17] Algaba, A.; Freire, E.; Gamero, E.; Rodríguez-Luis, A. J., Resonances of periodic orbits in Rössler system in presence of a triple-zero bifurcation, Int. J. Bifurc. Chaos Appl. Sci. Eng., 17, 1997-2008, (2007) · Zbl 1145.37322
[18] Yu, P.; Bi, Q., Analysis of non-linear dynamics and bifurcations of a double pendulum, J. Sound Vib., 217, 691-736, (1998) · Zbl 1236.70031
[19] Sontag, E. D., Mathematical control theory: deterministic finite dimensional systems, (1998), Springer New York · Zbl 0945.93001
[20] Sprott, J. C., Some simple chaotic Jerk functions, Am. J. Phys., 65, 537-543, (1997)
[21] Campbell, S. A.; Yuan, Y., Zero singularities of codimension two and three in delay differential equations, Nonlinearity, 21, 2671-2691, (2008) · Zbl 1149.92002
[22] Michelson, D., Steady solutions of the Kuramoto-Sivashinsky equation, Physica D, 19, 89-111, (1986) · Zbl 0603.35080
[23] Kuramoto, Y.; Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55, 356-369, (1976)
[24] Glendinning, P.; Sparrow, C., T-points: a codimension two heteroclinic bifurcation, J. Stat. Phys., 43, 479-488, (1986) · Zbl 0635.58031
[25] Fernández-Sánchez, F.; Freire, E.; Rodríguez-Luis, A. J., T-points in a \(\mathbb{Z}_2\)-symmetric electronic oscillator, Nonlinear Dyn., 28, 53-69, (2002) · Zbl 1065.34038
[26] Algaba, A.; Fernández-Sánchez, F.; Merino, M.; Rodríguez-Luis, A. J., Analysis of the T-point-Hopf bifurcation in the Lorenz system, Commun. Nonlinear Sci. Numer. Simul., 22, 676-691, (2015) · Zbl 1329.37082
[27] Kent, P.; Elgin, J., Noose bifurcation of periodic orbits, Nonlinearity, 4, 1045-1061, (1991) · Zbl 0747.34024
[28] Doedel, E. J.; Champneys, A. R.; Dercole, F.; Fairgrieve, T.; Kuznetsov, Y.; Oldeman, B. E.; Paffenroth, R.; Sandstede, B.; Wang, X.; Zhang, C., AUTO-07P: continuation and bifurcation software for ordinary differential equations (with homcont), (2012), Concordia University, Technical report
[29] Kuznetsov, Yu. A., Elements of applied bifurcation theory, (2004), Springer New York · Zbl 1082.37002
[30] Shilnikov, L. P., Birth of periodic motions from singular trajectories, Mat. Sb., 61, 433-466, (1963)
[31] Champneys, A. R.; Kuznetsov, Y. A., Numerical detection and continuation of codimension-two homoclinic bifurcations, Int. J. Bifurc. Chaos Appl. Sci. Eng., 4, 795-822, (1994) · Zbl 0873.34030
[32] Homburg, A. J.; Sandstede, B., Homoclinic and heteroclinic bifurcations in vector fields, (Broer, H.; Takens, F.; Hasselblatt, B., Handbook of Dynamical Systems, vol. 3, (2010), Elsevier Science), 379-524 · Zbl 1243.37024
[33] Shilnikov, L. P., A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl., 6, 163-166, (1965) · Zbl 0136.08202
[34] Shilnikov, L. P., A contribution to the problem of the structure of an extended neighborhood of a rough equilibrium state of saddle-focus type, Math. USSR Sb., 10, 91-102, (1970) · Zbl 0216.11201
[35] Belyakov, L. A., Bifurcation of systems with homoclinic curve of a saddle-focus with saddle quantity zero, Mat. Zametki, 36, 838-843, (1984) · Zbl 0598.34035
[36] Gonchenko, S. V.; Turaev, D. V.; Gaspard, P.; Nicolis, G., Complexity in the bifurcation structure of homoclinic loops to a saddle-focus, Nonlinearity, 10, 409-423, (1997) · Zbl 0905.34042
[37] Algaba, A.; Merino, M.; Rodríguez-Luis, A. J., Homoclinic interactions near a triple-zero degeneracy in Chua’s equation, Int. J. Bifurc. Chaos Appl. Sci. Eng., 22, 1250129, (2012) · Zbl 1270.34113
[38] Guckenheimer, J.; Holmes, P. J., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, (1983), Springer New York · Zbl 0515.34001
[39] Barrio, R.; Blesa, F.; Serrano, S., Unbounded dynamics in dissipative flows: Rössler model, Chaos, 24, 024407, (2014) · Zbl 1345.37031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.