×

Multiscale hybrid nonlocal means filtering using modified similarity measure. (English) Zbl 1395.94157

Summary: A new multiscale implementation of nonlocal means filtering (MHNLM) for image denoising is proposed. The proposed algorithm also introduces a modification of the similarity measure for patch comparison. Assuming the patch as an oriented surface, the notion of a normal vectors patch is introduced. The inner product of these normal vectors patches is defined and then used in the weighted Euclidean distance of intensity patches as the weight factor. The algorithm involves two steps: the first step is a multiscale implementation of an accelerated nonlocal means filtering in the discrete stationary wavelet domain to obtain a refined version of the noisy patches for later comparison. The next step is to apply the proposed modification of standard nonlocal means filtering to the noisy image using the reference patches obtained in the first step. These refined patches contain less noise, and consequently the computation of normal vectors and partial derivatives is more precise. Experimental results show equivalent or better performance of the proposed algorithm compared to various state-of-the-art algorithms.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
62M20 Inference from stochastic processes and prediction

Software:

BM3D

References:

[1] Rudin, L. I.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60, 1-4, 259-268, (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[2] Osher, S.; Sol, A.; Vese, L., Image decomposition and restoration using total variation minimization and the \(H^1\), Multiscale Modeling Simulation, 1, 3, 349-370, (2003) · Zbl 1051.49026 · doi:10.1137/S1540345902416247
[3] Gilboa, G.; Sochen, N.; Zeevi, Y. Y., Variational denoising of partly textured images by spatially varying constraints, IEEE Transactions on Image Processing, 15, 8, 2281-2289, (2006) · doi:10.1109/TIP.2006.875247
[4] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM Journal on Scientific Computing, 22, 2, 503-516, (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[5] Chen, Q.; Montesinos, P.; Sun, Q. S.; Heng, P. A.; Xia, D. S., Adaptive total variation denoising based on difference curvature, Image and Vision Computing, 28, 3, 298-306, (2010) · doi:10.1016/j.imavis.2009.04.012
[6] Chambolle, A., An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20, 1-2, 89-97, (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011320.81911.38
[7] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 7, 629-639, (1990) · doi:10.1109/34.56205
[8] You, Y.-L.; Xu, W.; Tannenbaum, A.; Kaveh, M., Behavioral analysis of anisotropic diffusion in image processing, IEEE Transactions on Image Processing, 5, 11, 1539-1553, (1996) · doi:10.1109/83.541424
[9] Steidl, G.; Weickert, J.; Brox, T.; Mrázek, P.; Welk, M., On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides, SIAM Journal on Numerical Analysis, 42, 2, 686-713, (2004) · Zbl 1083.94001 · doi:10.1137/S0036142903422429
[10] Black, M. J.; Sapiro, G.; Marimont, D. H.; Heeger, D., Robust anisotropic diffusion, IEEE Transactions on Image Processing, 7, 3, 421-432, (1998) · doi:10.1109/83.661192
[11] Lysaker, M.; Lundervold, A.; Tai, X.-C., Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Transactions on Image Processing, 12, 12, 1579-1589, (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[12] Brox, T.; Weickert, J.; Burgeth, B.; Mrázek, P., Nonlinear structure tensors, Image and Vision Computing, 24, 1, 41-55, (2006) · doi:10.1016/j.imavis.2005.09.010
[13] Mallat, S.; Hwang, W. L., Singularity detection and processing with wavelets, IEEE Transactions on Information Theory, 38, 2, 617-643, (1992) · Zbl 0745.93073 · doi:10.1109/18.119727
[14] Zhong, J.; Sun, H., Wavelet-based multiscale anisotropic diffusion with adaptive statistical analysis for image restoration, IEEE Transactions on Circuits and Systems. I. Regular Papers, 55, 9, 2716-2725, (2008) · doi:10.1109/TCSI.2008.920061
[15] Donoho, D. L.; Johnstone, I. M., Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 3, 425-455, (1994) · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[16] Mihçak, M. K.; Kozintsev, I.; Ramchandran, K.; Moulin, P., Low-complexity image denoising based on statistical modeling of wavelet coefficients, IEEE Signal Processing Letters, 6, 12, 300-303, (1999) · doi:10.1109/97.803428
[17] Tomasi, C.; Manduchi, R., Bilateral filtering for gray and color images, Proceedings of the 6th International Conference on Computer Vision
[18] Portilla, J.; Strela, V.; Wainwright, M. J.; Simoncelli, E. P., Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Transactions on Image Processing, 12, 11, 1338-1351, (2003) · Zbl 1279.94028 · doi:10.1109/TIP.2003.818640
[19] Buades, A.; Coll, B.; Morel, J. M., A non-local algorithm for image denoising, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’05) · Zbl 1108.94004
[20] Criminisi, A.; Pérez, P.; Toyama, K., Region filling and object removal by exemplar-based image inpainting, IEEE Transactions on Image Processing, 13, 9, 1200-1212, (2004) · doi:10.1109/TIP.2004.833105
[21] Efros, A. A.; Leung, T. K., Texture synthesis by non-parametric sampling, Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV ’99)
[22] Kervrann, C.; Boulanger, J.; Coup, P.; Sgallari, F.; Murli, A.; Paragios, N., Bayesian non-local means filter , image redundancy and adaptive dictionaries for noise removal, Scale Space and Variational Methods in Computer Vision. Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science, 4485, 520-532, (2007), Berlin, Germany: Springer, Berlin, Germany
[23] Elad, M.; Aharon, M., Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image Processing, 15, 12, 3736-3745, (2006) · doi:10.1109/TIP.2006.881969
[24] Tasdizen, T., Principal neighborhood dictionaries for nonlocal means image denoising, IEEE Transactions on Image Processing, 18, 12, 2649-2660, (2009) · Zbl 1371.94366 · doi:10.1109/TIP.2009.2028259
[25] Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K., Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Transactions on Image Processing, 16, 8, 2080-2095, (2007) · doi:10.1109/TIP.2007.901238
[26] Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; Zisserman, A., Non-local sparse models for image restoration, Proceedings of the 12th International Conference on Computer Vision (ICCV ’09) · doi:10.1109/ICCV.2009.5459452
[27] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Modeling & Simulation, 7, 3, 1005-1028, (2009) · Zbl 1181.35006 · doi:10.1137/070698592
[28] Brox, T.; Kleinschmidt, O.; Cremers, D., Efficient nonlocal means for denoising of textural patterns, IEEE Transactions on Image Processing, 17, 7, 1083-1092, (2008) · doi:10.1109/TIP.2008.924281
[29] Pizarro, L.; Mrázek, P.; Didas, S.; Grewenig, S.; Weickert, J., Generalised nonlocal image smoothing, International Journal of Computer Vision, 90, 1, 62-87, (2010) · Zbl 1477.94020 · doi:10.1007/s11263-010-0337-7
[30] Yang, Z.; Jacob, M., Nonlocal regularization of inverse problems: a unified variational framework, IEEE Transactions on Image Processing, 22, 8, 3192-3203, (2013) · doi:10.1109/TIP.2012.2216278
[31] Tschumperlé, D.; Brun, L., Non-local image smoothing by applying anisotropic diffusion PDE’s in the space of patches, Proceedings of the IEEE 16th International Conference on Image Processing (ICIP ’09) · doi:10.1109/ICIP.2009.5413453
[32] Salmon, J., On two parameters for denoising with non-local means, IEEE Signal Processing Letters, 17, 3, 269-272, (2010) · doi:10.1109/LSP.2009.2038954
[33] Mahmoudi, M.; Sapiro, G., Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Processing Letters, 12, 12, 839-842, (2005) · doi:10.1109/LSP.2005.859509
[34] Buades, A.; Coll, B.; Morel, J. M., A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation, 4, 2, 490-530, (2005) · Zbl 1108.94004 · doi:10.1137/040616024
[35] Lebrun, M.; Buades, A.; Morel, J. M., A nonlocal Bayesian image denoising algorithm, SIAM Journal on Imaging Sciences, 6, 3, 1665-1688, (2013) · Zbl 1279.68331 · doi:10.1137/120874989
[36] Liu, Y.-L.; Wang, J.; Chen, X.; Guo, Y.-W.; Peng, Q.-S., A robust and fast non-local means algorithm for image denoising, Journal of Computer Science and Technology, 23, 2, 270-279, (2008) · doi:10.1007/s11390-008-9129-8
[37] Lebrun, M.; Colom, M.; Buades, A.; Morel, J. M., Secrets of image denoising cuisine, Acta Numerica, 21, 475-576, (2012) · Zbl 1260.94016 · doi:10.1017/S0962492912000062
[38] Milanfar, P., A tour of modern image filtering, IEEE Signal Processing Magazine, 30, 1, 106-123, (2013) · doi:10.1109/MSP.2011.2179329
[39] Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K., BM3D image denoising with shape-adaptive principal component analysis, Proceedings of the Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS ’09)
[40] Zhang, L.; Dong, W.; Zhang, D.; Shi, G., Two-stage image denoising by principal component analysis with local pixel grouping, Pattern Recognition, 43, 4, 1531-1549, (2010) · Zbl 1191.68808 · doi:10.1016/j.patcog.2009.09.023
[41] Foi, A.; Katkovnik, V.; Egiazarian, K., Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images, IEEE Transactions on Image Processing, 16, 5, 1395-1411, (2007) · doi:10.1109/TIP.2007.891788
[42] Mallat, S., A Wavelet Tour of Signal Processing: The Sparse Way, (2008), New York, NY, USA: Academic Press, New York, NY, USA
[43] Nason, G.; Silverman, B.; Antoniadis, A.; Oppenheim, G., The stationary wavelet transform and some statistical applications, Wavelets and Statistics. Wavelets and Statistics, Lecture Notes in Statistics, 103, 281-299, (1995), New York, NY, USA: Springer, New York, NY, USA · Zbl 0828.62038
[44] Zheng, H.; Bouzerdoum, A.; Phung, S. L., Wavelet based nonlocal-means super-resolution for video sequences, Proceedings of the 17th IEEE International Conference on Image Processing (ICIP ’10) · doi:10.1109/ICIP.2010.5651488
[45] Iqbal, M. Z.; Ghafoor, A.; Siddiqui, A. M., Satellite image resolution enhancement using dual-tree complex wavelet transform and nonlocal means, IEEE Geoscience and Remote Sensing Letters, 10, 3, 451-455, (2013) · doi:10.1109/LGRS.2012.2208616
[46] Lebrun, M.; Buades, A.; Morel, J.-M., Implementation of the “Non-Local Bayes” (NL-Bayes) image denoising algorithm, Image Processing On Line, 3, 1-42, (2013)
[47] Buades, A.; Coll, B.; Morel, J.-M., Non-local means denoising, Image Processing On Line, 1, (2011) · Zbl 1182.62184
[48] Rubinstein, R.; Zibulevsky, M.; Elad, M., Double sparsity: learning sparse dictionaries for sparse signal approximation, IEEE Transactions on Signal Processing, 58, 3, part 2, 1553-1564, (2010) · Zbl 1392.94427 · doi:10.1109/TSP.2009.2036477
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.