×

Dynamics of the HIV infection under antiretroviral therapy: a cellular automata approach. (English) Zbl 1395.92093

Summary: The dynamics of human immunodeficiency virus infection under antiretroviral therapy is investigated using a cellular automata model where the effectiveness of each drug is self-adjusted by the concentration of \(CD4^{+}~T\) infected cells present at each time step. The effectiveness of the drugs and the infected cell concentration at the beginning of treatment are the control parameters of the cell population’s dynamics during therapy. The model allows describing processes of mono and combined therapies. The dynamics that emerges from this model when considering combined antiretroviral therapies reproduces with fair qualitative agreement the phases and different time scales of the process. As observed in clinical data, the results reproduce the significant decrease in the population of infected cells and a concomitant increase of the population of healthy cells in a short timescale (weeks) after the initiation of treatment. Over long time scales, early treatment with potent drugs may lead to undetectable levels of infection. For late treatment or treatments starting with a low density of \(CD4^{+} ~T\) healthy cells it was observed that the treatment may lead to a steady state in which the T cell counts are above the threshold associated with the onset of AIDS. The results obtained are validated through comparison to available clinical trial data.

MSC:

92C60 Medical epidemiology
68Q80 Cellular automata (computational aspects)
Full Text: DOI

References:

[1] World Health Organization, Global HIV/AIDS response, technical report, (2011), World Health Organization
[2] Trono, Didier; Van Lint, Carine; Rouzioux, Christine; Verdin, Eric; Barré-Sinoussi, Francoise; Chun, Tae-Wook; Chomont, Nicolas, HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals, Science, 329, 5988, 174-180, (2010)
[3] Le Douce, Valentin; Herbein, Georges; Rohr, Olivier; Schwartz, Christian, Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage, Retrovirology, 7, 32, (2010)
[4] Richman, Douglas D.; Margolis, David M.; Delaney, Martin; Greene, Warner C.; Hazuda, Daria; Pomerantz, Roger J., The challenge of finding a cure for HIV infection, Science, 323, 5919, 1304-1307, (2009)
[5] Perelson, Alan S.; Kirschner, Denise E.; De Boer, Rob, Dynamics of HIV infection of CD4^{+}T cells, Mathematical Biosciences, 114, 1, 81-125, (1993) · Zbl 0796.92016
[6] Perelson, Alan S.; Neumann, Avidan U.; Markowitz, Martin; Leonard, John M.; Ho, David D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271, 5255, 1582-1586, (1996)
[7] Kirschner, Denise; Weeb, G. F., Understanding drug resistance for monotherapy treatment of HIV infection, Bulletin of Mathematical Biology, 59, 4, 763-785, (1997) · Zbl 0922.92011
[8] Wei, Xiping; Ghosh, Sajal K.; Taylor, Maria E.; Johnson, Victoria A.; Emini, Emilio A.; Deutsch, Paul; Lifsonparallel, Jeffrey D.; Bonhoeffer, Sebastian; Nowak, Martin A.; Hahn, Beatrice H.; Saag, Michael S.; Shaw, George M., Viral dynamics in human immunodeficiency virus type 1 infection, Nature, 373, 117-122, (1995)
[9] Nowak, Martin A.; May, Robert M., Virus dynamics—mathematical principles of immunology and virology, (2000), Oxford University Press · Zbl 1101.92028
[10] Perelson, Alan S.; Nelson, Patrick W., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review, 41, 1, 3-44, (1999) · Zbl 1078.92502
[11] Landi, Alberto; Mazzoldi, Alberto; Andreoni, Chiara; Bianchi, Matteo; Cavallini, Andrea; Laurino, Marco; Ricotti, Leonardo; Iuliano, Rodolfo; Matteoli, Barbara; Ceccherini-Nelli, Luca, Modelling and control of HIV dynamics, Computer Methods and Programs in Biomedicine, 89, (2007)
[12] Rong, Libin; Perelson, Alan S., Modeling HIV persistence, the latent reservoir, and viral blips, Journal of Theoretical Biology, 260, 2, 308-331, (2009) · Zbl 1158.92028
[13] Wasserstein-Robbins, Freda, A mathematical model of HIV infection: simulating T4, T8, macrophages, antibody, and virus via specific anti-HIV response in the presence of adaptation and tropism, Bulletin of Mathematical Biology, 1208-1253, (2010) · Zbl 1197.92028
[14] Smith, R. J.; Wahl, L. M., Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects, Bulletin of Mathematical Biology, 66, 5, 1259-1283, (2004) · Zbl 1334.92239
[15] Krakovska, O.; Wahl, L. M., Optimal drug treatment regimens for HIV depend on adherence, Journal of Theoretical Biology, 246, 3, 499-509, (2007) · Zbl 1451.92170
[16] Ferreira, Jorge; Hernandez-Vargas, Esteban A.; Middleton, Richard H., Computer simulation of structured treatment interruption for HIV infection, Computer Methods and Programs in Biomedicine, 104, 2, 50-61, (2011)
[17] Zorzenon dos Santos, Rita Maria; Coutinho, Sérgio, Dynamics of HIV infection: a cellular automata approach, Physical Review Letters, 87, 16, 168102, (2001)
[18] Kougias, Ch. F.; Schulte, J., Simulating the immune response to the HIV-1 virus with cellular automata, Journal of Statistical Physics, 60, 263-273, (1990)
[19] Pandey, R. B.; Stauffer, D., Metastability with probabilistic cellular automata in an HIV infection, Journal of Statistical Physics, 61, 1-2, 235-240, (1990)
[20] Pandey, R. B., Cellular automata approach to interacting cellular network models for the dynamics of cell population in an early HIV infection, Physica A: Statistical Mechanics and its Applications, 179, 3, 442-470, (1991)
[21] Haase, A. T., Population biology of HVI-1 infection: viral and CD4^{+} T cell demographics and dynamics in lymphatic tissues, Annual Review of Immunology, 17, 625-656, (1999)
[22] Figueirêdo, P. H.; Coutinho, S.; Zorzenon dos Santos, R. M., Robustness of a cellular automata model for the HIV infection, Physica A: Statistical Mechanics and its Applications, 387, 26, 6545-6552, (2008)
[23] Solovey, Guillermo; Peruani, Fernando; Dawson, Silvina Ponce; dos Santos, Rita Maria Zorzenon, On cell resistance and immune response time lag in a model for the HIV infection, Physica A: Statistical Mechanics and its Applications, 343, 543-556, (2004)
[24] Strain, Matthew C.; Levine, Herbert, Comment on “dynamics of HIV infection: a cellular automata approach”, Physical Review Letters, 89, 219805, (2002)
[25] Burkhead, E.; Hawkins, J.; Molinek, D., A dynamical study of a cellular automata model of the spread of HIV in a lymph node, Bulletin of Mathematical Biology, 71, 1, 25-74, (2009) · Zbl 1169.92023
[26] Sloot, Peter M. A.; Chen, Fan; Boucher, Charles, Cellular automata model of drug therapy for HIV infection, (ACRI’01: Proceedings of the 5th International Conference on Cellular Automata for Research and Industry, (2002), Springer-Verlag London, UK), 282-293 · Zbl 1027.92504
[27] Benyoussef, A.; HafdiAllah, N. E.; ElKenz, A.; Ez-Zahraouy, H.; Loulidi, M., Dynamics of HIV infection on 2D cellular automata, Physica A, 322, 506-520, (2003) · Zbl 1018.92012
[28] Peer, M. A.; Shan, N. A.; Khan, K. A., Cellular automata and its advances to drug therapy for HIV infection, Indian Journal of Experimental Biology, 42, 2, 131-137, (2004)
[29] Shi, Veronica; Tridane, Abdessamad; Kuang, Yang, A viral load-based cellular automata approach to modeling HIV dynamics and drug treatment, Journal of Theoretical Biology, 253, 1, 24-35, (2008) · Zbl 1398.92253
[30] Precharattana, Monamorn; Nokkeaw, Arthorn; Triampo, Wannapong; Triampo, Darapond; Lenbury, Yongwimon, Stochastic cellular automata model and Monte Carlo simulations of CD4^{+}T cell dynamics with a proposed alternative leukapheresis treatment for HIV/AIDS, Computers in Biology and Medicine, 41, 7, 546-558, (2011)
[31] Palmisano, Lucia; Vella, Stefano, A brief history of antiretroviral therapy of HIV infection: success and challenges, Annali dell’Istituto Superiore di Sanità, 47, 1, 44-48, (2011)
[32] Miyauchi, Kosuke; Kim, Yuri; Latinovic, Olga; Morozov, Vladimir; Melikyan, Gregory B., HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes, Cell, 137, 3, 433-444, (2009)
[33] Greene, Warner C.; Matija Peterlin, B., Charting HIV’s remarkable voyage through the cell: basic science as a passport to future therapy, Nature Medicine, 8, 7, 673-680, (2001), 07
[34] Peterlin, B. Matija; Trono, Didier, Hide, shield and strike back: how HIV-infected cells avoid immune eradication, Nature Reviews Immunology, 3, 2, 97-107, (2003)
[35] Pantaleo, G.; Graziozi, C.; Fauci, A. S., The immunopathogenesis of immunodeficiency virus infection, New England Journal of Medicine, 238, 327, (1993)
[36] Coffin, J. M., HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy, Science (New York, NY), 267, 5197, 483-489, (1995)
[37] Daar, Eric S.; Moudgil, Tarsem; Meyer, Richard D.; Ho, David D., Transient high levels of viremia in patients with primary human immunodeficiency virus type 1 infection, New England Journal of Medicine, 324, 14, 961-964, (1991), 01
[38] Perelson, Alan S., Modelling viral and immune system dynamics, Nature Reviews Immunology, 2, 1, 28-36, (2002)
[39] Fauci, Anthony S., HIV and AIDS: 20 years of science, Nature Medicine, 9, 7, 839-843, (2003)
[40] Ho, David D.; Neumann, Avidan U.; Perelson, Alan S.; Chen, Wen; Leonard, John M.; Markowitz, Martin, Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, 373, 123-126, (1995)
[41] Herschhorn, Alon; Hizi, Amnon, Retroviral reverse transcriptases, Cellular and Molecular Life Sciences, 67, 16, 2717-2747, (2010)
[42] El Safadi, Yazan; Vivet-Boudou, Valérie; Marquet, Roland, HIV-1 reverse transcriptase inhibitors, Applied Microbiology and Biotechnology, 75, 4, 723-737, (2007)
[43] Perno, Carlo Federico, The discovery and development of HIV therapy: the new challenges, Annali dell’Istituto Superiore di Sanitá, 4, 1, 41-43, (2011)
[44] Schneider, Michael F.; Gange, Stephen J.; Williams, Carolyn M.; Anastos, Kathryn; Greenblatt, Ruth M.; Kingsley, Lawrence; Detels, Roger; Muñoz, Alvaro, Patterns of the hazard of death after AIDS through the evolution of antiretroviral therapy: 1984-2004, AIDS, 19, 17, 2009-2018, (2005)
[45] Marchand, Christophe; Maddali, Kasthuraiah; Métifiot, Mathieu; Pommier, Yves, HIV-1 IN inhibitors: 2010 update and perspectives, Current Topics in Medicinal Chemistry, 9, 11, 1016-1037, (2009)
[46] Wensing, Annemarie M. J.; van Maarseveen, Noortje M.; Nijhuis, Monique, Fifteen years of HIV protease inhibitors: raising the barrier to resistance, Antiviral Research, 85, 1, 59-74, (2010)
[47] Ho, David D., Dynamics of HIV-1 replication in vivo, Journal of Clinical Investigation, 99, 2565-2567, (1997)
[48] Nowak, M. A.; Anderson, Roy M.; Boerlijts, Maarten V.; Bonhoeffer, S.; May, Robert M., HIV-1 evolution and disease progression, Science, 274, 1008-1011, (1996)
[49] Chun, Tae-wook; Carruth, Lucy; Finzi, Diana; Shen, Xuefei; DiGiuseppe, Joseph A.; Taylor, Harry; Hermankova, Monika; Chadwick, Karen; Margolik, Joseph; Quinn, Thomas C.; Kuo, Yen-Hong; Brookmeyer, Ronald; Zeiger, Martha A.; Barditch-Crovo, Patricia; Siliciano, Robert F., Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection, Nature, 387, 182-188, (1997)
[50] Chun, Tae-Wook; Fauci, Anthony S., Latent reservoirs of HIV: obstacles to the eradication of virus, Proceedings of the National Academy of Sciences of the United States of America, 96, 20, 10958-10961, (1999)
[51] Siliciano, Janet D.; Kajdas, Joleen; Finzi, Diana; Quinn, Thomas C.; Chadwick, Karen; Margolick, Joseph B.; Kovacs, Colin; Gange, Stephen J.; Siliciano, Robert F., Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4^{+}T cells, Nature Medicine, 9, 6, 727-728, (2003)
[52] Chun, Tae-Wook; Nickle, David C.; Justement, J. Shawn; Large, Danielle; Semerjian, Alice; Curlin, Marcel E.; O’Shea, M. Angeline; Hallahan, Claire W.; Daucher, Marybeth; Ward, Douglas J.; Moir, Susan; Mullins, James I.; Kovacs, Colin; Fauci, Anthony S., HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoirs, Journal of Clinical Investigation, 115, 11, 3250-3255, (2005)
[53] Huang, Yangxin; Lu, Tao, Modeling long-term longitudinal HIV dynamics with application to an AIDS clinical study, The Annals of Applied Statistics, 2, 4, 1384-1408, (2008) · Zbl 1169.92026
[54] Bangsberg, David R.; Charlebois, Edwin D.; Grant, Robert M.; Holodniy, Mark; Deeks, Steven G.; Perry, Sharon; Conroy, Kathleen Nugent; Clark, Richard; Guzman, David; Zolopa, Andrew; Moss, Andrew, High levels of adherence do not prevent accumulation of HIV drug resistance mutations, AIDS, 17, 13, 1925-1932, (2003)
[55] Acosta, Edward P.; Wu, Hulin; Hammer, Scott M.; Yu, Song; Kuritzkes, Daniel R.; Walawander, Ann; Eron, Joseph J.; Fichtenbaum, Carl J.; Pettinelli, Carla; Neath, Denise; Ferguson, Elaine; Saah, Alfred J.; Gerber, John G., Comparison of two indinavir/ritonavir regimens in the treatment of HIV-infected individuals, Journal of Acquired Immune Deficiency Syndromes, 37, 3, 1358-1366, (2004)
[56] Novitsky, Vladimir; Wang, Rui; Bussmann, Hermann; Lockman, Shahin; Baum, Marianna; Shapiro, Roger; Thior, Ibou; Wester, Carolyn; Wester, C. William; Ogwu, Anthony; Asmelash, Aida; Musonda, Rosemary; Campa, Adriana; Moyo, Sikhulile; van Widenfelt, Erik; Mine, Madisa; Moffat, Claire; Mmalane, Mompati; Makhema, Joseph; Marlink, Richard; Gilbert, Peter; Seage, George R.; DeGruttola, Victor; Essex, M., HIV-1 subtype C-infected individuals maintaining high viral load as potential targets for the “test-and-treat” approach to reduce HIV transmission, PLoS One, 5, 4, e10148, (2010)
[57] Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies, Lancet, 373, 9672, 1352-1363, (2009)
[58] Siegfried, N.; Uthman, O. A.; Rutherford, G. W., Optimal time for initiation of antiretroviral therapy in asymptomatic, HIV-infected, treatment-naive adults, Cochrane Database of Systematic Reviews, 17, 3, CD008272, (2010)
[59] CD4 cell count and the risk of AIDS or death in HIV-infected adults on combination antiretroviral therapy with a suppressed viral load: a longitudinal cohort study from COHERE, PLoS Medicine, 9, 3, e1001194, (2012)
[60] Autran, B.; Carcelain, G.; Li, T. S.; Blanc, C.; Mathez, D.; Tubiana, R.; Katlama, C.; Debré, P.; Leibowitch, J., Positive effects of combined antiretroviral therapy on CD4^{+}T cell homeostasis and function in advanced HIV disease, Science, 277, 5322, 112-116, (1997)
[61] Ruffault, A.; Michelet, C.; Jacquelinet, C.; Guist’au, O.; Genetet, N.; Bariou, C.; Colimon, R.; Cartier, F., The prognostic value of plasma viremia in HIV-infected patients under AZT treatment: a two-year follow-up study, Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 9, 4, 243-248, (1995)
[62] Zhang, Zhi-Qiang; Notermans, Daan W.; Sedgewick, Gerald; Cavert, Winstor; Wietgrefe, Stephen; Zupancic, Mary; Gebhard, Kristin; Henry, Keith; Boies, Lawrence; Chen, Zongming; Jenkins, Marc; Mills, Roger; McDade, Hugh; Goodwin, Carolyn; Schuwirth, Caspar M.; Danner, Sven A.; Haase, Ashley T., Kinetics of CD4^{+}T cell repopulation of lymphoid tissues after treatment of HIV-1 infection, PNAS, 95, 3, 1154-1159, (1998)
[63] Wit, Ferdinand W. N.M.; van Leeuvwen, Remko; Weverling, Gerrit Jan; Jurriaans, Suzanne; Nauta, Klaas; Steingrover, Radjin; Schuijtemaker, Johan; Eyssen, Xander; Fortuin, David; Weeda, Marjan; de Wolf, Frank; Reiss, Peter; Danner, Sven A.; Lange, Joep M. A., Outcome and predictors of failure of higlhy active antiretroviral therapy: one-year follow-up of a cohort of human immunodeficiency virus type 1-infected persons, The Journal of Infectious Diseases, 179, 790-798, (1999)
[64] Kaufmann, Gilbert R.; Perrin, Luc; Pantaleo, Guiseppe; Opravil, Milos; Furrer, Hansjakob; Telenti, Amalio; Hirschel, Bernard; Ledergerber, Bruno; Vernazza, Pietro; Bernasconi, Enos; Rickenbach, Martin; Egger, Matthias; Battegay, Manuel, CD4 T-lymphocyte recovery in individuals with advanced HIV-1 infection receiving potent antiretroviral therapy for 4 years: the swiss HIV cohort study, Archives of Internal Medicine, 163, 18, 2187-2195, (2003)
[65] Hockett, R. D.; Kilby, J. M.; Derdeyn, C. A.; Saag, M. S.; Sillers, M.; Squires, K.; Chiz, S.; Nowak, M.a.; Shaw, G. M.; Bucy, R. P., Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA, The Journal of Experimental Medicine, 189, 10, 1545-1554, (1999)
[66] Enting, R. H.; Prins, J. M.; Jurriaans, S.; Brinkman, K.; Portegies, P.; Lange, J. M., Concentrations of human immunodeficiency virus type 1 (HIV-1) RNA in cerebrospinal fluid after antiretroviral treatment initiated during primary HIV-1 infection, Clinical Infectious Diseases, 32, 7, 1095-1099, (2001)
[67] Mellgren, Asa; Antinori, Andrea; Cinque, Paola; Price, Richard W.; Eggers, Christian; Hagberg, Lars; Gisslén, Magnus, Cerebrospinal fluid HIV-1 infection usually responds well to antiretroviral treatment, Antiviral Therapy, 10, 6, 701-707, (2005)
[68] Cavert, W., Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection, Science, 276, 5314, 960-964, (1997)
[69] Wu, H.; Ding, A. A., Population HIV-1 dynamics in vivo: applicable models and inferential tools for virological data from AIDS clinical trials, Biometrics, 55, 2, 410-418, (1999) · Zbl 1059.62735
[70] Herz, A. V.M.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A., Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay, Proceedings of the National Academy of Sciences of the United States of America, 93, 14, 7247-7251, (1996)
[71] Perelson, Alan S.; Essunger, Paulina; Cao, Yunzhen; Vesanen, Mika; Hurley, Arlene; Saksela, Kalle; Markowitz, Martin; Ho, David, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 6629, 188-191, (1997)
[72] Fitzgerald, Anthony P.; DeGruttola, Victor G.; Vaida, Florin, Modelling HIV viral rebound using non-linear mixed effects models, Statistics in Medicine, 21, 14, 2093-2108, (2002)
[73] Müller, Viktor; Vigueras-Gómez, Javier Flavio; Bonhoeffer, Sebastian, Decelerating decay of latently infected cells during prolonged therapy for human immunodeficiency virus type 1 infection, Journal of Virology, 76, 17, 8963-8965, (2002)
[74] Simon, Viviana; Ho, David D., HIV-1 dynamics in vivo: implications for therapy, Nature Reviews Microbiology, 1, 181-190, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.