×

DSIR double-rumors spreading model in complex networks. (English) Zbl 1395.91383

Summary: For there are always several kinds of rumors spreading simultaneously in real networks, the research about multiple rumors propagation process is necessary and significant. In this paper, considering the spread of two rumors with different launch time, and assuming the content of each rumor may have nothing to do with the others, we study the double-rumors concurrently spreading dynamics in complex networks, and introduce two kinds of double-rumors spreading models: the DSIR model and the C-DSIR model. We then provide the double-rumors dissemination mechanism by states-vectors expressions and derive the mean-field equations of models to describe their dynamics. Particularly, without rumors priorities, we introduce a selection parameter \(\theta\) for spreaders to express the attractions of different rumors, and study the influence of this parameter on double-rumors spreading. Numerical simulations are performed to explore the interaction between two rumors, and we investigate the spreading peak and the final size of the rumors with various parameters. Simulation results indicate that, the best launch time of new rumor exists explicitly for the DSIR model, the selection parameter \(\theta\) and the delay time \(T_{in}\) are interdependent quantities, and the closer the start time of new rumor is to the best time, the more obvious the interdependence would be. Meanwhile, \(T_{in}\) is also a network-dependent parameter for our models in a series of BA networks. Furthermore, under the same conditions, the influential nodes identified by large coreness are the relative better promulgators for new rumor, so they are what the strategy should give priorities to. Our experiment reveals some interesting patterns of double-rumors spreading and suggest a possible avenue for further study of interplays of multiple pieces of information in complex network.

MSC:

91D30 Social networks; opinion dynamics
Full Text: DOI

References:

[1] Wang, Z.; Kokubo, S.; Jusup, M.; Tanimoto, J., Universal scaling for the dilemma strength in evolutionary games, Phys Life Rev, 14, 1-30, (2015)
[2] Wang, Z.; Bauch, C. T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; Perra, N.; Salathé, M.; Zhao, D., Statistical physics of vaccination, Phys Rep, 664, 1-113, (2016) · Zbl 1359.92111
[3] Li, L., Patch invasion in a spatial epidemic model, Appl Math Comput, 258, 342-349, (2015) · Zbl 1338.92130
[4] Zhao, D. W.; Wang, L. H.; Xu, L. J.; Wang, Z., Finding another yourself in multiplex networks, Appl Math Comput, 266, 599-604, (2015) · Zbl 1410.92148
[5] Mari, L.; Ciddio, M.; Casagrandi, R.; Perez-Saez, J.; Bertuzzo, E.; Rinaldo, A.; Sokolow, S. H.; De Leo, G. A.; Gatto, M., Heterogeneity in schistosomiasis transmission dynamics, J Theor Biol, 432, 87-99, (2017) · Zbl 1393.92049
[6] Sun, G. Q.; Xie, J. H.; Huang, S. H.; Jin, Z.; Li, M. T.; Liu, L., Transmission dynamics of cholera: mathematical modeling and control strategies, Commun Nonlinear Sci Numer Simul, 45, 235-244, (2017) · Zbl 1485.92154
[7] Xing, Y.; Song, L.; Sun, G. Q.; Jin, Z.; Zhang, J., Assessing reappearance factors of h7n9 Avian influenza in China, Appl Math Comput, 309, 192-204, (2017) · Zbl 1411.92297
[8] Zhao, D. W.; Wang, L. H.; Li, S. D.; Wang, Z.; Wang, L.; Gao, B., Immunization of epidemics in multiplex networks, PLoS One, 9, e112018, (2014)
[9] Wang, Z.; Zhao, D. W.; Wang, L.; Sun, G. Q.; Jin, Z., Immunity of multiplex networks via acquaintance vaccination, Europhys Lett, 112, 48002, (2015)
[10] Villela, D. A.M., Analysis of the vectorial capacity of vector-borne diseases using moment-generating functions, Appl Math Comput, 290, 1-8, (2016) · Zbl 1410.92137
[11] Wang, Z.; Andrews, M. A.; Wu, Z. X.; Wang, L.; Bauch, C. T., Coupled disease-behavior dynamics on complex networks: a review, Phys Life Rev, 15, 1-29, (2015)
[12] Sun, G. Q.; Jusup, M.; Jin, Z.; Wang, Y.; Wang, Z., Pattern transitions in spatial epidemics: mechanisms and emergent properties, Phys Life Rev, 19, 43-73, (2016)
[13] Wang, Z.; Wang, L.; Perc, M., Degree mixing in multilayer networks impedes the evolution of cooperation, Phys Rev E, 89, 052813, (2014)
[14] Zhao, D. W.; Li, L. X.; Peng, H. P.; Luo, Q.; Yang, Y. X., Multiple routes transmitted epidemics on multiplex networks, Phys Lett A, 378, 770-776, (2014) · Zbl 1323.92216
[15] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Evolutionary games on multilayer networks: a colloquium, Eur Phys J B, 88, 1-15, (2015)
[16] Zhao, D. W.; Wang, Z.; Xiao, G. X.; Gao, B.; Wang, L. H., The robustness of interdependent networks under the interplay between cascading failures and virus propagation, EPL, 115, 58004, (2016)
[17] Daley, D. J.; Kendall, D. G., Stochastic rumours, IMA J Appl Math, 1, 42-55, (1965)
[18] Sudbury, A., The proportion of population never hearing a rumour, J Appl Probab, 22, 443-446, (1985) · Zbl 0578.92025
[19] Zan, Y. L.; Wu, J. L.; Li, P.; Yu, Q. L., SICR rumor spreading model in complex networks: counterattack and self-resistance, Physica A, 405, 159-170, (2014) · Zbl 1395.91357
[20] Ji, K.; Liu, J.; Xiang, G., Anti-rumor dynamics and emergence of the timing threshold on complex network, Physica A, 411, 87-94, (2014) · Zbl 1402.91599
[21] Zhao, D. W.; Wang, L. H.; Zhi, Y. F.; Zhang, J.; Wang, Z., The robustness of multiplex networks under layer node-based attack, Sci Rep, 6, 24304, (2016)
[22] Zhao, D. W.; Wang, L. H.; Xu, S. J.; Liu, G. Q.; Han, X. H.; Li, S. D., Vital layer nodes of multiplex networks for immunization and attack, Chaos Solitons Fractals, 105, 169-175, (2017) · Zbl 1380.90079
[23] Kitsak, M.; Gallos, L. K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H. E., Identification of influential spreaders in complex networks, Nat Phys, 6, 888-893, (2010)
[24] Borge-Holthoefer, J.; Meloni, S.; Gonçalves, B., Emergence of influential spreaders in modified rumor models, J Stat Phys, 151, 383-393, (2013) · Zbl 1270.91077
[25] Trpevski, D.; Tang, W. K.S.; Kocarev, L., Model for rumor spreading over networks, Phys Rev E, 81, 056102, (2010)
[26] Wang, J. J.; Zhao, L. J.; Huang, R. B., 2SI2r rumor spreading model in homogeneous networks, Physica A, 413, 153-161, (2014) · Zbl 1402.91642
[27] Freeman, L. C., A set of measures of centrality based on betweenness, Sociometry, 40, 35-41, (1977)
[28] Seidman, S. B., Network structure and minimum degree, Soc Netw, 5, 269-287, (1983)
[29] Newman, M. E.J., The structure and function of complex networks, SIAM Rev, 45, 167-256, (2003) · Zbl 1029.68010
[30] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U., Complex networks: structure and dynamics, Phys Rep, 424, 175-308, (2006) · Zbl 1371.82002
[31] Carmi, S.; Havlin, S.; Kirkpatrick, S.; Shavitt, Y.; Shir, E., A model of Internet topology using k-shell decomposition, Proc Natl Acad Sci USA, 104, 11150-11154, (2007)
[32] L., L.; Zhang, Y. C.; Yeung, C. H.; Zhou, T., Leaders in social networks, the delicious case, PLoS One, 6, e21202, (2011)
[33] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512, (1999) · Zbl 1226.05223
[34] Borge-Holthoefer, J.; Moreno, Y., Absence of influential spreaders in rumor dynamics, Phys Rev E, 85, 026116, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.