×

Network formation by contact arrested propagation. (English) Zbl 1395.82101

Summary: We propose here a network growth model which we term Contact Arrested Propagation (CAP). One representation of the CAP model comprises a set of two-dimensional line segments on a lattice, propagating independently at constant speed in both directions until they collide. The generic form of the model extends to arbitrary networks, and, in particular, to three-dimensional lattices, where it may be realised as a set of expanding planes, halted upon intersection. The model is implemented as a simple and completely background independent substitution system. We restrict attention to one-, two- and three-dimensional background lattices and investigate how CAP networks are influenced by lattice connectivity, spatial dimension, system size and initial conditions. Certain scaling properties exhibit little sensitivity to the particular lattice connectivity but change significantly with lattice dimension, indicating universality. Suggested applications of the model include various fracturing and fragmentation processes, and we expect that CAP may find many other uses, due to its simplicity, generality and ease of implementation.

MSC:

82B43 Percolation

References:

[1] Banavar, J. R.; Maritan, A.; Rinaldo, A., Size and form in efficient transportation networks, Nature, 399, 130-132, (1999)
[2] Rinaldo, A.; Banavar, J. R.; Colizza, V.; Maritan, A., On network form and function, Physica A, 340, 749-755, (2004)
[3] Kramer, S.; Marder, M., Evolution of river networks, Phys. Rev. Lett., 68, 205, (1992)
[4] Takayasu, H.; Inaoka, H., New type of self-organized criticality in a model of erosion, Phys. Rev. Lett., 68, 966-969, (1992)
[5] Leheny, R. L.; Nagel, S. R., Model for the evolution of river networks, Phys. Rev. Lett., 71, 1470, (1993)
[6] Leopold, L. B.; Langbein, W. B., The concept of entropy in landscape evolution, (1962), US Government Printing Office Washington DC
[7] Meakin, P.; Feder, J.; Jøssang, T., Simple statistical models for river networks, Physica A, 176, 409-429, (1991)
[8] Meakin, P., Formation of fractal clusters and networks by irreversible diffusion-limited aggregation, Phys. Rev. Lett., 51, 1119, (1983)
[9] Masek, J. G.; Turcotte, D. L., A diffusion-limited aggregation model for the evolution of drainage networks, Earth Planet. Sci. Lett., 119, 379-386, (1993)
[10] Stauffer, D.; Aharony, A., Introduction to percolation theory, (1994), Taylor & Francis London and Bristol, PA · Zbl 1042.82556
[11] Sahimi, M., Applications of percolation theory, (1994), Taylor & Francis London
[12] Aharony, A.; Hinrichsen, E. L.; Hansen, A.; Feder, J.; Hardy, H., Effective renormalization group algorithm for transport in oil reservoirs, Physica A, 177, 260-266, (1991)
[13] Kirkpatrick, S., Percolation and conduction, Rev. Mod. Phys., 45, 574, (1973)
[14] Wilkinson, D.; Willemsen, J. F., Invasion percolation: a new form of percolation theory, J. Phys. A: Math. Gen., 16, 3365, (1983)
[15] Adler, P. M.; Thovert, J.-F., Fractures and fracture networks, vol. 15, (1999), Springer
[16] Steacy, S. J.; Sammis, C. G., An automaton for fractal patterns of fragmentation, Nature, 353, 250-252, (1991)
[17] Hernández, G.; Herrmann, H. J., Discrete models for two-and three-dimensional fragmentation, Physica A, 215, 420-430, (1995)
[18] Fortes, M.; Andrade, P., A model of fragmentation by nonintersecting cracks, J. Appl. Phys., 64, 5157-5160, (1988) · Zbl 0127.05801
[19] Korsnes, R.; Souza, S.; Donangelo, R.; Hansen, A.; Paczuski, M.; Sneppen, K., Scaling in fracture and refreezing of sea ice, Physica A, 331, 291-296, (2004)
[20] Iyer, K.; Jamtveit, B.; Mathiesen, J.; Malthe-Sørenssen, A.; Feder, J., Reaction-assisted hierarchical fracturing during serpentinization, Earth Planet. Sci. Lett., 267, 503-516, (2008)
[21] Erdös, P.; Rényi, A., On random graphs i, Publ. Math. Debrecen, 6, 290-297, (1959) · Zbl 0092.15705
[22] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47, (2002) · Zbl 1205.82086
[23] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512, (1999) · Zbl 1226.05223
[24] Watts, D. J.; Strogatz, S. H., Collective dynamics of small-world networks, Nature, 393, 440-442, (1998) · Zbl 1368.05139
[25] Wolfram, S., A new kind of science, (2002), Wolfram Media, Inc. Champaign, IL · Zbl 1022.68084
[26] Morrow, K. L.; Rowland, T.; Danforth, C. M., Dynamic structure of networks updated according to simple, local rules, Phys. Rev. E, 80, 016103, (2009)
[27] Southwell, R.; Huang, J.; Cannings, C., Complex networks from simple rules, Complex Syst., 22, 151-173, (2013) · Zbl 1357.68099
[28] Kobchenko, M.; Hafver, A.; Jettestuen, E.; Galland, O.; Renard, F.; Meakin, P.; Jamtveit, B.; Dysthe, D. K., Drainage fracture networks in elastic solids with internal fluid generation, Europhys. Lett., 102, 66002-66008, (2013)
[29] Schönfisch, B.; de Roos, A., Synchronous and asynchronous updating in cellular automata, BioSystems, 51, 123-143, (1999)
[30] Bandini, S.; Bonomi, A.; Vizzari, G., What do we mean by asynchronous ca? A reflection on types and effects of asynchronicity, (Cellular Automata, (2010), Springer), 385-394 · Zbl 1306.68103
[31] Ferenc, J.-S.; Néda, Z., On the size distribution of Poisson Voronoi cells, Physica A, 385, 518-526, (2007)
[32] Kranz, R. L., Microcracks in rocks: a review, Tectonophysics, 100, 449-480, (1983)
[33] Du, W.; Kemeny, J., Modeling borehole breakout by mixed mode crack growth, interaction, and coalescence, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 809-812, (1993)
[34] Kobchenko, M.; Panahi, H.; Renard, F.; Dysthe, D. K.; Malthe-Sørenssen, A.; Mazzini, A.; Scheibert, J.; Jamtveit, B.; Meakin, P., 4d imaging of fracturing in organic-rich shales during heating, J. Geophys. Res.: Solid Earth, 116, 1978-2012, (2011)
[35] Karimi-Fard, M.; Durlofsky, L.; Aziz, K., An efficient discrete-fracture model applicable for general-purpose reservoir simulators, SPE J., 9, 227-236, (2004)
[36] Hartley, L.; Roberts, D., Summary of discrete fracture network modelling as applied to hydrogeology of the forsmark and laxemar sites, technical report, swedish nuclear fuel and waste management co., (2013)
[37] Wettstein, S. J.; Wittel, F. K.; Araújo, N. A.; Lanyon, B.; Herrmann, H. J., From invasion percolation to flow in rock fracture networks, Physica A, 391, 264-277, (2012)
[38] Schoof, C., Ice-sheet acceleration driven by melt supply variability, Nature, 468, 803-806, (2010)
[39] Peron, H.; Laloui, L.; Hu, L.-B.; Hueckel, T., Formation of drying crack patterns in soils: a deterministic approach, Acta Geotech., 1-7, (2013)
[40] Novak, V.; Šimåunek, J.; Genuchten, M. T.v., Infiltration of water into soil with cracks, J. Irrig. Drain. Eng., 126, 41-47, (2000)
[41] Furst, T.; Vodak, R.; Bil, M., On the incompatibility of richards’ equation and finger-like infiltration in unsaturated homogeneous porous media, Water Resour. Res., 2009, (2009)
[42] Boswell, G. P.; Jacobs, H.; Davidson, F. A.; Gadd, G. M.; Ritz, K., Growth and function of fungal mycelia in heterogeneous environments, Bull. Math. Biol., 65, 447-477, (2003) · Zbl 1334.92253
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.