×

Decoherence effect on quantum-memory-assisted entropic uncertainty relations. (English) Zbl 1395.81020

Summary: Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle \(A\) is initially entangled with quantum memory \(B\). Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle \(A\) is affected by environmental noise (GAD) while particle \(B\) as quantum memory is free from any noises, another case is that particle \(B\) is affected by the external noise while particle \(A\) is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of \(A\) and \(B\), but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81S22 Open systems, reduced dynamics, master equations, decoherence
94A17 Measures of information, entropy
62J10 Analysis of variance and covariance (ANOVA)
Full Text: DOI

References:

[1] Heisenberg, W, Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Z. Phys., 43, 172, (1927) · JFM 53.0853.05 · doi:10.1007/BF01397280
[2] Robertson, HP, Violation of heisenberg’s uncertainty principle, Phys. Rev., 34, 163, (1929) · doi:10.1103/PhysRev.34.163
[3] Kennard, EH, Zur quantenmechanik einfacher bewegungstypen, Z. Phys., 44, 326, (1927) · JFM 53.0853.02 · doi:10.1007/BF01391200
[4] Deutsch, D, Uncertainty in quantum measurements, Phys. Rev. Lett., 50, 631-633, (1983) · doi:10.1103/PhysRevLett.50.631
[5] Kraus, K, Complementary observables and uncertainty relations, Phys. Rev. D, 35, 3070, (1987) · doi:10.1103/PhysRevD.35.3070
[6] Maassen, H; Uffink, JBM, Generalized entropic uncertainty relations, Phys. Rev. Lett., 60, 1103, (1988) · doi:10.1103/PhysRevLett.60.1103
[7] Berta, M; Christandl, M; Colbeck, R; Renes, JM; Renner, R, The uncertainty principle in the presence of quantum memory, Nat. Phys., 6, 659-662, (2010) · doi:10.1038/nphys1734
[8] Renes, JM; Boileau, JC, Physical underpinnings of privacy, Phys. Rev. A, 78, 032335, (2008) · doi:10.1103/PhysRevA.78.032335
[9] Wild, M.M., Renes, J.M.: In: Proceeding of International Symposium on Information Theory. IEEE, Cambridge, Masschusetts, pp. 334-338 (2012) · Zbl 1334.94006
[10] Kim, YH; Shih, Y, Experimental realization of popper’s experiment: violation of the uncertainty principle?, Found. Phys., 29, 1849, (1999) · doi:10.1023/A:1018890316979
[11] Tomamichel, M; Renner, R, Uncertainty relation for smooth entropies, Phys. Rev. Lett., 106, 110506, (2011) · doi:10.1103/PhysRevLett.106.110506
[12] Huang, AJ; Shi, JD; Wang, D; Ye, L, Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations, Quantum Inf. Process., 16, 46, (2017) · Zbl 1387.81057 · doi:10.1007/s11128-016-1503-9
[13] Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2002)
[14] Coles, PJ; Colbeck, R; Yu, L; Zwolak, M, Uncertainty relations from simple entropic properties, Phys. Rev. Lett., 108, 210405, (2012) · doi:10.1103/PhysRevLett.108.210405
[15] Prevedel, R; Hamel, DR; Colbeck, R; Fisher, K; Resch, KJ, Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement, Nat. Phys., 7, 757, (2011) · doi:10.1038/nphys2048
[16] Li, CF; Xu, JS; Xu, XY; Li, K; Guo, GC, Experimental investigation of the entanglement-assisted entropic uncertainty principle, Nat. Phys., 7, 752, (2011) · doi:10.1038/nphys2047
[17] Xiang, ZL; Ashhab, S; You, JQ; Nori, F, Hybrid quantum circuits: superconducting circuits interacting with other quantum systems, Rev. Mod. Phys., 85, 623, (2013) · doi:10.1103/RevModPhys.85.623
[18] Pati, AK; etal., Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory, Phys. Rev. A, 86, 042105, (2012) · doi:10.1103/PhysRevA.86.042105
[19] Pramanik, T; Mal, S; Majumdar, AS, Lower bound of quantum uncertainty from extractable classical information, Quantum Inf. Process., 15, 981-999, (2016) · Zbl 1333.81041 · doi:10.1007/s11128-015-1187-6
[20] Wang, KK; Zhan, X; Bian, ZH; Li, J; Zhang, YS; Xue, P, Experimental investigation of the stronger uncertainty relations for all incompatible observables, Phys. Rev. A, 93, 052108, (2016) · doi:10.1103/PhysRevA.93.052108
[21] Hu, ML; Fan, H, Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation, Phys. Rev. A, 87, 022314, (2013) · doi:10.1103/PhysRevA.87.022314
[22] Hu, ML; Fan, H, Upper bound and shareability of quantum discord based on entropic uncertainty relations, Phys. Rev. A, 88, 014105, (2013) · doi:10.1103/PhysRevA.88.014105
[23] Sun, YH; Kuang, LM, Quantum decoherence for multi-photon entangled states, Chin. Phys. Lett., 22, 1833-1836, (2005) · doi:10.1088/0256-307X/22/8/003
[24] Sun, WY; Wang, D; Shi, JD; Ye, L, Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs, Sci. Rep., 7, 39651, (2017) · doi:10.1038/srep39651
[25] Sun, WY; Wang, D; Yang, J; Ye, L, Enhancement of multipartite entanglement in an open system under non-inertial frames, Quantum Inf. Process., 16, 90, (2017) · Zbl 1373.81085 · doi:10.1007/s11128-017-1540-z
[26] Zou, HM; Fang, MF; Yang, BY; Guo, YN; He, W; Zhang, SY, The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments, Phys. Scr., 89, 115101, (2014) · doi:10.1088/0031-8949/89/11/115101
[27] Yao, CM; Chen, ZH; Ma, ZH; Severini, S; Serafini, A, Entanglement and discord assisted entropic uncertainty relations under decoherence, Sci. China Phys. Mech. Astron., 57, 1703-1711, (2014) · doi:10.1007/s11433-014-5546-6
[28] Zhang, YL; Fang, MF; Kang, GD; Zhou, QP, Reducing quantum-memory-assisted entropic uncertainty by weak measurement and weak measurement reversal, Int. J. Quantum Inf., 13, 1550037, (2015) · Zbl 1329.81120 · doi:10.1142/S0219749915500379
[29] Xu, ZY; Yang, WL; Feng, M, Quantum-memory-assisted entropic uncertainty relation under noise, Phys. Rev. A, 86, 012113, (2012) · doi:10.1103/PhysRevA.86.012113
[30] Hu, YD; Zhang, SB; Wang, D; Ye, L, Entropic uncertainty relation under dissipative environments and its steering by local non-unitary operations, Int. J. Theor. Phys., 55, 4641-4650, (2016) · Zbl 1358.81013 · doi:10.1007/s10773-016-3085-9
[31] Wang, D; Ming, F; Huang, AJ; Ye, L, Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame, Laser Phys. Lett., 14, 055205, (2017) · doi:10.1088/1612-202X/aa66fc
[32] Horodecki, R; Horodecki, M, Information-theoretic aspects of inseparability of mixed states, Phys. Rev. A, 54, 1838, (1996) · Zbl 1037.81501 · doi:10.1103/PhysRevA.54.1838
[33] Ollivier, H; Zurek, WH, Quantum discord: a measure of the quantumness of correlations, Phys. Rev. Lett., 88, 017901, (2001) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[34] Hu, M.L., Hu, X.Y., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and quantum correlations. arXiv:1703.01852 (2017)
[35] Hu, ML, Disentanglement, Bell-nonlocality violation and teleportation capacity of the decaying tripartite states, Ann. Phys., 327, 2332-2342, (2012) · Zbl 1252.81013 · doi:10.1016/j.aop.2012.05.007
[36] Christopher, K; Mary, BR, Minimal entropy of states emerging from noisy quantum channels, IEEE Trans. Inf. Theory, 47, 192, (2001) · Zbl 1016.94012 · doi:10.1109/18.904522
[37] Peters, NA; Wei, TC; Kwiat, PG, Mixed-state sensitivity of several quantum-information benchmarks, Phys. Rev. A, 70, 052309, (2004) · doi:10.1103/PhysRevA.70.052309
[38] Singh, U; Bera, MN; Dhar, HS; Pati, AK, Maximally coherent mixed states: complementarity between maximal coherence and mixedness, Phys. Rev. A, 91, 052115, (2015) · doi:10.1103/PhysRevA.91.052115
[39] Korotkov, AN; Jordan, AN, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett., 97, 166805, (2006) · doi:10.1103/PhysRevLett.97.166805
[40] Wang, SC; Yu, ZW; Zou, WJ; Wang, XB, Protecting quantum states from decoherence of finite temperature using weak measurement, Phys. Rev. A, 89, 022318, (2014) · doi:10.1103/PhysRevA.89.022318
[41] Zhang, YJ; Han, W; Fan, H; Xia, YJ, Enhancing entanglement trapping by weak measurement and quantum measurement reversal, Ann. Phys., 354, 203-212, (2015) · Zbl 1377.81029 · doi:10.1016/j.aop.2014.12.010
[42] Sun, Q; Al-Amri, M; Davidovich, L; Zubairy, MS, Reversing entanglement change by a weak measurement, Phys. Rev. A, 82, 052323, (2010) · doi:10.1103/PhysRevA.82.052323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.